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Abstract

Motivated mainly by geophysical problems, we have developed a numerical model, that can
be used to study static friction of self-affine rough elastic surfaces. As a starting point, we
used a model for vertical contact, developed by Batrouni et al [1]. We extended the model to
represent the whole process of static friction: two surfaces are squeezed together, and then pulled
horizontally in opposite directions until they start sliding against each other. The model has been
tested against known results, and show good agreement with the expected behaviour. For friction
of rough elastic surfaces, we get a relatively good power-law fit:

���������
	������� ���� . However,
further simulations are needed to determine the coefficient � with reasonable precision.
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Chapter 1

Introduction

1.1 Motivation

The motivation behind this work has been mainly geophysical. We wished to contribute to a
better understanding of the process behind earthquakes.

Earthquakes are frictional phenomena between tectonic faults or plate-interfaces [2, 3, 4, 5].
These faults and interfaces are examples of rough surfaces. Like other fracture surfaces, they
are self-affine with a Hurst exponent close to 0.8 [6, 7, 8, 9, 10, 11]. Earthquakes develop via a
stick-slip instability [4], where elastic strain is accumulated between the surfaces until the tension
becomes too large, and there is a sudden slippage, an earthquake. This process, and thereby the
friction of rough surfaces, is essential to earthquake mechanics and predictability [3].

However, there are little experimental data available on the friction of macroscopilcally rough
surfaces, and more work is needed for this friction process to be fully understood. Here, the use
of theoretical and numerical models plays an important part. By studying various simplified
models, each trying to capture essential properties, one can gain important qualitative insights.
By comparing each model’s behaviour with experimental and theoretical results, and with other
models, one can assess the feasability of each model, and get closer to understanding the original
problem.

1.2 Objectives

Our objective has been to create a numerical model, based on the theory of elasticity, that could
be used to study elastic friction between rough surfaces. As a starting point, we intended to use
the model proposed by Batrouni et al [1] for vertical contact between rough surfaces. However,
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we wished to extend the model to include horizontal forces and displacements. In addition, we
wanted to introduce a mechanism for slip (breaking of the connections between the two surfaces),
in order to be able to study the force necessary for the surfaces to start sliding against each other.

In order to establish our model, the following sub-tasks needed to be fulfilled:

� Study of relevant theory� Design of the model� Implementation in an appropriate programming language� Test of the model on simple systems with known behaviour� Study of the model’s behaviour for friction of rough surfaces� Suggestion of possible improvements and extensions to the model

1.3 Overview of the report

Section 2 contains background information about friction of rough surfaces, and gives a sum-
mary of previous work in this field. Section 3 presents relevant theory about the forces and
displacements in an elastic medium. Our model for friction of rough surfaces is described in sec-
tion 4, while the simulation results are presented and discussed in section 5. Section 6 presents
suggested extensions and improvements to the model. Finally, section 7 contains a summary of
the results and conclusions of this work.
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Chapter 2

Background

Friction is an ancient field of study [12]. The first person to formulate the classical law of friction,
stating that frictional force is proportional to applied load, was Leonardo Da Vinci [13, 14]. This
law was later re-discovered by Guillaume Amonton [15], and is often called Amonton’s 1st law.

Today, most theories assume that the frictional force is proportional to the real area of contact,
that is, the sum of all contact points between the two surfaces [16, 13]. Quite a few models have
been developed to study the relationship between this real contact area and the applied load.
The basic mechanism is as follows: when more load is applied, the surfaces are pushed closer
together. Then, new microscopic contact areas form, while the existing ones grow.

(a) Hertz contact. (b) Archard’s model.

Figure 2.1: Two early models for vertical contact of rough surfaces.

In 1882, Hertz [17] found that when an elastic, spherical asperity is squeezed into a hard flat
surface by a load

���
(figure 2.1 a) , the real contact area is proportional to

� ��!#"� . This result
has later been verified experimentally, in the case of a diamond stylus sliding on a diamond
surface[18].

Archard [19] applied Hertz’ solution to a fractal-like model, where small spherical asperities
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was distributed on top of larger spherical asperities and so on (figure 2.1 b). Archard found that
the model gave successively closer approximations to the law $ %�&� as more stages of ’asper-
ities on top of each other’ were considered. He claimed that the relationship between load and
real area would be dependent on the surface topology: If the number of asperity contacts remains
constant while the load is increased, the real contact area is proportional to

� ��!#"� . However, if
the number of asperity contacts increase with the load such that the average size of the asperity
contacts remain constant, the real area of contact is proportional to

�'�
.

In the 1960s and 1970s, several models were studied, with results confirming Archard’s the-
ory: the relationship between load and contact area is dependent on surface topography, with$ (� ��!#"� and $ (�)� for the special cases mentioned above.

Greenwood and Williamson [20] developed a model where the surface was filled with hemi-
spherical asperities, whose height varied according to a given distribution. They found that for
elastic deformation and a Gaussian height distribution (which is followed rather close by many
engineering surfaces) the real area of contact was almost exactly proportional to the load, thus
fulfilling Amantons’ 1st law. Later, several models [21, 22, 23] similar to the Greenwood and
Williamson model have been studied, using various height distributions. Sometimes also the ra-
dius of the asperity tips or the density of the asperities has been varied according to some statistic
distribution. The general result is that the relationship between load and real contact area follows
some power law. For most ’realistic’ height distributions, the exponent is found to be close to 1.

In most of the models mentioned, each surface asperity is supposed to be independent: the
forces on one asperity does not change the geometry of another. Also, roughness is introduced
only on a single length-scale or on a small range of length-scales. These are reasonably good
approximations for polished surfaces and other surfaces where the relevant length scale is much
higher than the large-scale self-affine cutoff length of the material. Several experiments [24, 25]
support, with reasonable precision, the relationship $ *�+� for such surfaces. For self-affine
surfaces with high large-scale cutoff lengths, however, the approximations does not hold true. In
such systems, roughness on virtually all length-scales are important, and the asperities deform
dependently of each other.

In 2001, Persson [26, 27] published a theory where he studied vertical contact for randomly
rough surfaces. He found that in the framework of his model, the real contact area is in most
cases proportional to

���
. However, in a numerical work published in 2002, Batrouni et al [1]

found that
�)�, $�-�./-10 $ 2��3 . 45-� for self-affine rough surfaces, using a model based on the

equations of elasticity.
In a frictional process, both vertical and horizontal forces and displacements are involved.
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However, most of the models used to study real area of contact look at vertical contact only, and
most of the models ignore shear-forces. Also, when used to explain friction, most models take
for granted that the frictional force is proportional to the real contact ares. In this work, we have
extended the model of Batrouni et al [1] to include horizontal forces and displacements, and to
represent the whole process of static friction: two surfaces are squeezed together, and then pulled
horizontally in opposite directions until they start sliding against each other.
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Chapter 3

Theory of elasticity: Forces and
displacements.

The theoretical background for our model is the theory of elasticity. This theory describes how
continuous media deform elastically due to applied forces. Elastic deformations are reversible:
an elastic medium returns to its original size and shape when all applied stresses are removed.
See for example Landau and Lifshitz [28] for more about the theory of elasticity.

When the deformation of a body is caused by forces applied to its surface, theory of elasticity
provides the following equation of equilibrium [28]:687:9<;>=@?)ACB,DFEG6�EIH@B�?�JLK

(3.1)

where
B

is the deformation in a point, and
=

is Poison’s ratio. The equation of equilibrium
(3.1) holds throughout the space occupied by the elastic medium.

3.1 Elastic half-space subject to a point force

Figure 3.1: Elastic half-space subject to a point force.
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Let us consider an elastic half-space subject to a point force in the x-z plane, as illustrated in
figure 3.1. The equation of equilibrium can then be solved to find the deformation as a function
of position. We take origin to be the point where the point force hits the media. At the surface
(z=0), we then get the following solution [28]:

M � 6ONQPSRT?UJ 7VD�=;XWQY Z ;T687:9<=@?[ � � D 687:9\;>=@?�N[ � � �^] (3.2)M � 6ONQPSRT?UJ 7VD�=;XWQY Z 9 687:9\;>=@?�N[ � � � D2_ ;^687`9\=@?[ D ;>=[ "ba � � ]
where [ J%c N � D<R � and

Y
is Young’s modulus.

3.2 Elastic half-space subject to a general stress-field

The elastic equations (3.2) for a point force on an elastic half-plane can be integrated up to be
valid for any stress-field d on the elastic half-plane surface:

M � 6
NQPSR^?UJ eFef6 ����� 6ON�9gNihjP5Rk9lRmhn? di� 6
NihjPSRmho?)D ����� 6ONp9GNih
PSRk9qRrh�? d^� 6
Nih
PSRmh�?s?st>Nih�tuRmh (3.3)M � 6
NQPSR^?UJ eFe 6 �v��� 6ONw9qNih
PSRx9lRrho? di� 6
Nih
PSRmh�?yD ����� 6ON�9gNih
PSRk9qRrh�? d^� 6
Nih
PSRmh�?s?Tt>NihntuRrh
where the Green functions are found from equation (3.2):

����� 6{z�PS|}?~J 687:9\= � ?WQY H 7c z � D\| ������ 6{z�PS|}?~J 687VD�=@?y6�7�9l;>=@?;@WQY H M6�z � D<| � ?����� 6{z�PS|}?~J 9 6�7�D�=@?�687:9\;>=@?;XWQY H M6{z � D\| � ?�v��� 6{z�PS|}?~J 687:9\= � ?WQY H 7c z � D\| � D =V6�7:9\=@?WyY H 76�z � D\| � ? "�!#�
with

zyJ�N�9gN h
and

|�J�Rk9lR h
.
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3.3 Discretization of the elastic equations

To use the elastic equations (3.3) in our numerical model, they need to be discretizised. This can
be done by averaging over an area � � which corresponds to the discretization size of the grid that
represent the elastic half-plane.

The resulting discrete equations are as follows:

M �S�/� � � �5� J � �o� � � � ���8�S�/� ���m�o� � � � � � � ���@���/� �o� � � � � D �������/� ���m�o� � � � � � � �{�����/� �o� � � � � (3.4)M ���/� � � �5� J � � � � � � �v�����/� ���m� � � � � � � � ���@�S�/� � � � � � � D �������/� ���m� � �/� � � � � �{�@���/� � � � � � �
The computation of the discrete Green functions �k��� P ����� P �v��� and ����� is found in Appendix

A. If we set
zyJ�N�9�N h J � H�6{��9�� h ? and

|�J�R19�R h J � H�6��19}� h ? where a is the lattice spacing,
we get the following expressions:

����� 6�z�PS|}?�J 7� � H 7�9\= �WQY H1�� � 6{z^D �r  ;¡?+H@zO¢<£¤ |¥D �r  ;:D�¦ 6{|CD �r  ;¡? � DL6{ziD �r  ;>? �|§9 �r  ;:D�¦ 6{|I9 �r  ;>? � D�6�zTD �r  ;>? �¡¨©D�6{|CD �r  ;>?+H@z
¢<£¤ zTD �r  ;:D�¦ 6{|ªD �r  ;>? � D�6�zTD �r  ;>? �z«9 �r  ;:D�¦ 6{|ªD �r  ;>? � D�6�z�9 �b  ;>? �¡¨©D�6�z�9 �b  ;>?�H@z
¢<£¤ |I9 �r  ;:D�¦ 6O|§9 �r  ;¡? � DL6{z«9 �r  ;>? �|ªD �r  ;:D�¦ 6O|ªD �r  ;>? � DL6{z¬9 �r  ;>? �>¨©D%6{|29 �b  ;>?+H@z
¢ £¤ z¬9 �r  ;:D�¦ 6{|I9 �r  ;>? � D�6�z�9 �b  ;>? �z^D �r  ;:D�¦ 6{|I9 �r  ;>? � D�6�zTD �r  ;>? �m¨©w ®¯
����� 6{z�P5|}?~J 7� � H 687VD�=X?°687`9\;>=@?;@WQY H Z 7; 6O|¥D �r  ;¡?+H�z
¢ _ 6{z^D �r  ;¡? � DL6{|CD �r  ;¡? �6{z¬9 �r  ;>? � DL6{|ªD �r  ;>? � aD 7; 6{|I9 �b  ;>?+H@z
¢ _ 6�z«9 �r  ;¡? � DL6{|I9 �r  ;>? �6{ziD �r  ;¡? � DL6O|§9 �r  ;>? � aD±6{ziD �r  ;¡?�H _ � [�²�³ � ¢ _ |CD �r  ;z^D �b  ; a 9 � [¡²�³ � ¢ _ |29 �r  ;ziD �b  ; a�aD±6{z«9 �r  ;>?+H _ � [�²�³ � ¢ _ |29 �b  ;z«9 �r  ; a 9 � [�²�³ � ¢ _ |¥D �r  ;z¬9 �r  ; a&a ]
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�v��� 6�z�PS|}?�J 9 7� � H 6�7´D�=@?µ6�7�9\;¡=X?;XWQY H Z 7; 6O|ªD �r  ;>?+H@z
¢¶_ 6{z^D �b  ;>? � DL6O|¥D �b  ;>? �6�z¬9 �r  ;¡? � DL6O|ªD �b  ;>? �>aD 7; 6O|29 �r  ;¡?+H@zO¢ _ 6{z¬9 �r  ;>? � D�6{|I9 �r  ;>? �6�zTD �r  ;>? � DL6{|I9 �r  ;>? � aD�6�zTD �r  ;>?+H)_ � [�²�³ � ¢¶_ |¥D �r  ;z^D �r  ; a 9 � [�²�³ � ¢¶_ |I9 �r  ;ziD �r  ; a�aD�6�z�9 �r  ;>?+H _ � [¡²�³ � ¢ _ |§9 �r  ;z�9 �b  ; a 9 � [¡²�³ � ¢ _ |ªD �b  ;z�9 �r  ; a�a ]
����� 6 M PS·b?¸J 7� � H 7�D�=WQY H �� � 6{|¥D �r  ;>?+H�z
¢<£¤ z^D �r  ;:D�¦ 6O|ªD �r  ;>? � DL6{z^D �b  ;>? �z�9 �r  ;:D�¦ 6O|ªD �r  ;>? � DL6{z¬9 �r  ;>? � ¨©D�6{|§9 �r  ;>?+H@z
¢<£¤ z�9 �r  ;`D�¦ 6{|29 �b  ;>? � DL6{z¬9 �r  ;>? �z^D �r  ;`D�¦ 6{|29 �b  ;>? � DL6{z^D �r  ;¡? � ¨©D�687:9\=@?µ6{z^D �b  ;>?+H@z
¢ £¤ |ªD �r  ;:D�¦ 6O|¥D �b  ;>? � DL6{z^D �b  ;>? �|§9 �r  ;:D�¦ 6O|29 �r  ;¡? � DL6�zTD �r  ;>? � ¨©D¹687:9<=@?µ6{z¬9 �r  ;>?+H@z
¢<£¤ |29 �r  ;:D�¦ 6{|§9 �r  ;>? � DL6{z¬9 �r  ;>? �|CD �r  ;:D�¦ 6{|ªD �r  ;>? � D�6�z�9 �b  ;>? � ¨©  ®¯

3.4 Vector formulation

When we have discrete data, we can choose between using vectors or matrixes to represent
positions, forces and displacements. For example, if we have a º¼»¶º matrix to start with, the
same information can be contained in a vector of length º � . Using vector formulation, equation
(3.4) can be re-formulated: B � J ½ �8� H�¾ � D ½ ��� H�¾ � (3.5)B � J ½ ��� H�¾ � D ½ ��� H�¾ �

Here,
½ ��� , ½ ��� , ½ ��� and

½ ��� are 2D matrixes which contain the Green functions as function
of two positions: r and r’. The variable r includes information of both x and y (if x goes from 1
to º , r goes from 1 to º � ).
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Chapter 4

Model for static friction of rough surfaces

(a) First, the surfaces are
squeezed together vertic-
ally.

(b) Then, they are pulled
horizontally in opposite
directions.

Figure 4.1: Original system: two rough elastic surfaces are squeezed together, and then pulled in
separate directions horizontally.

The original system that we want to study consists of two large blocks of elastic media, each
with a rough surface. The two blocks are first squeezed together vertically, and then pulled
in separate directions horizontally, until they ’slip’ and start gliding along each other. This is
illustrated in figure 4.1.

4.1 Simplified system

It has been shown [29, 30] that many of the characteristics of the system in figure 4.1 is captured
by a simpler setting where an equivalent elastic, rough surface is pushed into a hard plane surface.
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This is a useful system to work with, and the results is directly comparable to earlier work, since
most earlier models also has used such a system.

We wish to take the modification somewhat further, and use a system where a hard, rough
surface is pushed into an elastic plane surface. This makes the equations of elasticity for an
elastic half-plane more obviously applicable. This simplified system is shown in figure 4.2.

(a) First, the rough surface is
squeezed into the elastic halfplane

(b) Then, it is pulled horisontally

Figure 4.2: Simplified system: a hard, rough surface is squeezed into an elastic half-plane, and
then pulled horizontally.

The change from two elastic rough surfaces to one hard rough surface that is pushed into
an elastic half-plane will modify the behaviour of the system somewhat [29]. But we believe
that it is an useful system to work with, and that the results will give us improved qualitative
understanding, also of the original system.

4.2 Discrete representation of the surfaces

We represent both surfaces as two-dimensional ¿�»g¿ lattices, with a discretization size � that
corresponds to the low-scale self-affine cutoff length of the rough surface. The rough surface is
described by its vertical profile ÀXÁ � � ��Â , while the elastic half-plane is described by the displace-
ments at each point: À M � � ��Â .

The two-dimensional lattices could easily be implemented as 2d matrixes with dimensionºÃ»Äº (where º J§Å Æ ). However, we choose an alternative approach where equation 3.5 can be
used directly. For each surface, we introduce a vector of length º � where the vector positions
corresponds to positions in the original ¿Ç»G¿ lattice. The matrix- and vector- formulations are
equivalent. If the indices of the matrix are i and j, and the numbering start at

7
, one can go from

one formulation to the other as follows :
| � ³�[ �{N�6{�sP��r?´J�·bÈ ²�³8É@[ 6O��D º H��r? .
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4.3 Numerical generation of self-affine rough surfaces

In Fourier space, 2d self-affine surfaces has the power spectrum Ê 6�Ë^?�Ì -ÍSÎ
Ï�Î
Ð . This can be
utilised to generate self-affine surfaces (see also[31]):

� Fill the L x L grid with white noise (random numbers)� Fourier transform the grid, using a discrete 2d fast Fourier transform� Filter the data, by multiplying each value (both the real and the imaginary part) with-6 c Í�ÎÑSÒ Í�ÎÓ ?�Ô Ð^ÏuÕ�Ö .� Transform the grid back to normal space, using the inverse 2d fast Fourier transform

An example of a rough surface produced by this two-dimensional Fourier method, is shown in
figure 4.3.

Figure 4.3: Rough surface generated using a two-dimensional Fourier method.

4.4 De-coupling of the elastic equations

In section 3.3, we found discrete elastic equations (3.5) that can be used to find the forces and
displacements of our elastic half-plane.

The system can be greatly simplified if we can ignore the coupling between vertical and
horizontal forces and displacements. If we assume that the coupling is weak, so that the coupling-
terms can be ignored, equation (3.5) becomes two relatively simple, independent relations:

B � J ½ ��� H�¾ � (4.1)B � J ½ ��� H�¾ � (4.2)
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Having removed the link between horizontal and vertical effects, we can divide the friction
process into two independent stages:

1. Vertical squeeze:
The rough surface is squeezed a distance �±� into the elastic, flat medium. This correspond
to the model used by Batrouni et al [1].

2. Horizontal pull:
Having obtained the contact area from 1., we pull the rough surface a distance �w� hori-
zontally. Using the obtained force distributions horizontally and vertically, we can also
simulate a ’slip’ process, where the horizontal forces overcome the vertical ones, and the
rough surface starts sliding.

4.5 Vertical squeeze

Figure 4.4: A rough surface is pushed vertically into an elastic, flat medium, until it reaches
a given penetration depth �±� . The dashed, horizontal line represents the undeformed elastic
medium.

The first stage of our friction process is the vertical squeeze, modelled by Batrouni et al
[1]. As shown in figure 4.4, we squeeze the rough surface into the elastic flat medium, until the
normal distance between the point of first contact to the undeformed surface of the flat medium
equals a given penetration depth �±� .
4.5.1 Boundary conditions

To be able to solve the elastic equation (4.1) for our system, the boundary conditions need to be
established. We have the following known quantities:

13



1. Displacements: Knowing the profile of the rough surface, and given the penetration depth��� , the displacements À M �µÂ of the elastic medium is defined at all points where the two
surfaces are in contact.

2. Forces: At the points where the surfaces are not in contact, the elastic surface deform in
response to the influences from the contact regions. Equilibrium is reached when the net
force vanish. Therefore, at points with no contact, the forces � Í equal zero.

We introduce a diagonal ¿ � »g¿ � contact matrix ×}Ø with elements equal to 1 on contact-sites,
and to 0 at no-contact sites. The boundary conditions 1. and 2. can then be formulated as:

×ÙØ H@B Ø J �� � K � ³rÚÛÉ ��¢ ³ =VÜÝ� ³sÞ ¢ Éß²àÉ ¢ ³ � ²�³M �S� �oá¬â���ã�ä�å � ³«²àÉ ¢ ³ � ²�³TÚiÉ ��¢ ³ = (4.3)6{æß9 ×ÙØ ?+H�¾ Ø J K È�·rÈ [ RrÜ Þ È [ È
where I is the identity matrix.

4.5.2 Solving the elastic equation

The elastic equation (4.1) can be rewritten as:

½ Ø�Ø Hr6{æ�9 ×}Ø ?+H�¾ Ø D ½ Ø8Ø H ×}Ø H�¾ Ø J 6{æß9 ×ÙØ ?'H�B Ø D ×ÙØ H@B Ø
this form is convenient, because it facilitates inclusion of the boundary conditions directly

into the equation. We see from equation (4.3) that ×çØ H«B Ø is known everywhere, and that6{æ�9 ×}Ø ?+H�¾ Ø is zero everywhere. Putting the unknowns on the left-hand side, we obtain:

½ Ø�Ø H ×}Ø H�¾ Ø 9�6{æß9 ×Ä� ?+H@B Ø J ×ÙØ H�B Ø (4.4)

We define a vector èyØ J ×ÙØ H�¾ Ø DL6Oæ�9 ×}Ø ?+H@B Ø . The vector èyØ then represents all the
unknown quantities in our system:
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è�Ø J �� � M �~� ³TÚÛÉ ��¢ ³ =´Üé� ³sÞ ¢ É`²°É ¢ ³ � ²�³�X� � ³y²àÉ ¢ ³ � ²�³bÚÛÉ ��¢ ³ =
By the definition of ×f� and

æ
, we have that

6
æß9 ×ÄØ ?éH ×ÙØ J ×}Ø HQ6{æß9 ×ÙØ ?�J ê
, that×}Ø H ×ÙØ J ×}Ø and that

6{æ�9 ×}Ø ?¬H@6
æß9 ×}Ø ?&Jª6Oæß9 ×ÙØ ? . Using this, we get from equation (4.4):

½ Ø�Ø H ×ÙØ H è«Ø 9�6{æ�9 ×}Ø ?+H è�Ø J ×}Ø H�B Øëì 9�æ�D ì æ'D ½ ���Sí H ×ÙØ°í H è�Ø J ×}Ø H�B Ø (4.5)

Equation (4.5) is on the form Ax=b, and can be solved using, for example, the conjugate
gradient method [32].

4.5.3 Real contact area

Figure 4.5: As the rough surface is pushed into the elastic, flat medium, the elastic media deform.
The real contact area (red) is not equal to the ’slice area’ (blue).

One problem remains. The real contact area, which defines ×çØ , is not known. A first estimate
for the contact area might be the ’slice area’, the area obtained by taking a cut trough the rough
surface. However, as seen in figure 4.5, this contact-area estimation will be inaccurate. As
we push the rough surface into the elastic one, the latter deform, and the contact area becomes
significantly smaller than the ’slice area’.

We find the correct contact area, by using an iteration procedure:

1. Initially, use the ’slice area’ as an estimate. Forcing this contact area upon the system,
solve equation (4.5), and obtain the forces and displacement of the elastic solid.

2. When the elastic equation is solved with a too large contact area, some of the forces ob-
tained will be negative. In these points, the elastic surface tries to pull away from the rough
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surface. Update the contact area by setting îp� J%K at the elements corresponding to sites
where �X�éï K .

3. Solve equation (4.5) with the new contact area. If there are still negative forces, go back to
2) and update ×ÄØ again. Repeat this process until there are no negative forces.

After we have solved equation (4.5) with the final ×fØ , we have a solution of both the vertical
force distribution and the real contact area of our system, given the rough surface profile and the
penetration depth ��� .
4.6 Horizontal pull

Figure 4.6: A rough surface, already squeezed a distance �w� into an elastic medium, is pulled
horizontally a distance ��� . The dashed line represents the position of the rough surface before
the horizontal movement.

Our rough surface has now been squeezed vertically a distance �w� into the elastic medium.
It is time for the next stage of our process: the horizontal pull. Keeping the vertical forces
constant (due to the de-coupling of the elastic equation, the vertical forces and deformations are
independent to the horizontal ones), we pull the rough surface a distance ��� horizontally relative
to the elastic medium.

4.6.1 Boundary conditions

Again, we need to establish boundary conditions, to be able to solve the elastic equation (4.2).
We have the following known quantities:

1. Displacements: Everywhere where the elastic medium is bound to the rough surface, it is
pulled a distance ��� horizontally. On all such ’bound’ sites, the deformations M � equals� � .
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2. Forces: At the points where the surfaces are not bound to each other, the elastic surface is
free to deform horizontally in response to the influences from the fastened regions. Equi-
librium is reached when the net force vanish. Therefore, at ’free’ sites, the forces �>� equal
zero.

We introduce a diagonal ¿ � N ¿ � matrix ×}ð with elements equal to 1 on bound sites, and to 0 at
free sites. The boundary conditions 1. and 2. can then be formulated as:

×Ùð H@B ð J �� � K � ³ � [ È�ÈV=�� ³ È@=��� � ³yñ�É@M ¢«t1=�� ³ È@= (4.6)6Oæ�9 ×Ùð ?+H�¾ ð J K È�·rÈ [ RrÜ Þ È [ È
where I is the identity. Initially, the two surfaces will be bound together everywhere where

they are in contact: ×Äðµò J ×}Ø .
4.6.2 Solving the elastic equation

Using the boundary conditions (4.6) , we can, via the same procedure as in section 4.5.2, re-
formulate the elastic equation (4.2) to the following:

ì 9�æ�D ì æ�D ½ ��� í H ×Ùð í H è�ð J ×Ùð H�B ð (4.7)

with è�ð J ×Ùð H�¾ ð D�6{æß9 ×Ùð ?+H@B ð . Equation (4.7) is on the form Ax=b, and can be solved
using, for example, the conjugate gradient method [32].

4.6.3 Slip - breaking the bonds between the surfaces

Once the horizontal forces overcome some threshold, the bonds between the two surfaces should
break down, and the rough surface should start sliding along the elastic one. We wish to establish
an algorithm for this ’slip’ process.

We introduce a local friction constant ó , defined as follows: if �¡��ôLó¬�@� at some lattice site,
the ’bond’ between the surfaces at this site will break. The horizontal deformation of the elastic
surface will then adjust itself, so that the total horizontal force at the new ’free’ site equals zero.
In our simulations we have used ó J ²°É ¢y= ³ � ¢ ³ J�KTõö; .
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The problem is that we do not initially know the distance �±� necessary for the first bond to
break. However, we can assume that the force-distribution À��¡�>Â is a piecewise linear function of� � : the relationship is linear on the intervals where both the vertical contact area and the hori-
zontally ”bound” area are constant. Furthermore, due to the de-coupling of the elastic equations,
the linear functions �X� 6 � � ? go through zero. With no horizontal displacements

6 �±� J�Ku? , there
are no horizontal forces

6 �X� J�Ku? .
We simulate the slip-process, using the following iterative model:

1. Define a penetration depth �±� . Using the algorithm described in section 4.5, find the
vertical force distribution À�����Â , the total vertical force

��� JL÷ �X� and the contact area ×ÄØ
2. Initially, set ×}ð J ×}Ø .
3. Introduce a small horizontal movement �±� . Find the horizontal force distribution À��X�>Â and

the total horizontal force
� � J ÷ ��� , solving equation (4.7).

4. Find the site where the fraction
� Ñø ��ù has its maximum value. This will be the first ’bond’ to

break.

5. Update ×}ð , setting î±� JLK at the element corresponding to the broken ’bond’.

6. Find the total horizontal force
� ��� ú �oá needed to break the chosen ’bond’. Assuming a linear

relationship between ÀX�@�>Â and ��� , going through zero,
� ��� ú �oá relates to

� � as 1 relates to| � N û � Ñø � ùbü . This implies the following scaling relation:
� ��� ú �oá J � � H -á Æ � À1ý Ñþ ý ù Â .

7. Repeat from 2. until all ’bonds’ have broken.

When all bonds are broken, using the process 1.-5., the elastic surface is no longer bound to the
rough one, and the rough surface start sliding. The static friction force is defined as the force
needed to make this happen:

���S�#���
	������ J | � N À � ��� ú �oá Â
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4.7 Summary: Algorithm

1. Squeeze

(a) Generate a rough surface

(b) Define a penetration depth ÿ �
(c) � � is now defined everywhere where there is contact, and

� ����� everywhere where there is

no contact

(d) Set initial contact area � Ø equal to the slice area (see figure 4.5).

(e) Solve the elastic equation,
ì��
	���ì	�� � ��� í�� � Ø í���� Ø�� � Ø ��� Ø with respect to � Ø , to

obtain the vertical forces � � ��� and displacements ��� ���
(f) Iterate. If there exists points where

� ����� :
i. set � � �!� at these points

ii. return to (e)

(g) We now know the contact area, the vertical force distribution � � ��� and the total vertical force" � �!# �%$&� � ���
2. Pull and slip

(a) Initially, set the stick area � ð equal to the contact area � Ø
(b) Introduce a small horizontal pulling-distance ÿ �
(c) Now, � �'� ÿ � everywhere where there is stick, and

� �(�)� everywhere where there is no

stick

(d) Solve the elastic equation,
ì��
	���ì	�� � ��� í�� � ð í*��� ð � � ð �+� ð with respect to � ð , to

obtain the horizontal forces � � ��� and displacements �,� �-�
(e) Calculate the total horizontal force

" �.�!# �%$&� � �-�
(f) Iterate. While there exists points where � �/��0 :

i. Find the point with the maximum fraction
� Ñø � ù

ii. set � � �1� at this point

iii. find
" ��� ú �oá � " � � -á Æ ��2 ý Ñþ ý ù43

iv. return to (e).

(g) Find the friction force
" �S�#���
	������ � $'5768� " ��� ú �oá �
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3. Return to 1. and repeat on a defined number of samples. Average the results over the samples, to

find a point in the static friction law
" �S�#���
	������ � " �S�#���
	�������9 " �;:

4. Return to 1 with another penetration depth ÿ �
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Chapter 5

Numerical simulations

5.1 Hertz vertical contact

First, we wanted to test our model, by using it on a simple system with known results. We
decided to use the Hertz contact problem for this purpose. The Hertz system consists of a single,
spherical asperity that is pushed vertically into a flat surface (see figure 2.1 a). We used the
procedure described in section 4.5, to find the relationship between �w� and

�)�
for such a system.

The results are plotted in figure 5.1.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
4

5

6

7

8

9

10

11

ln D
z

ln
 F

n

circle:      R=60 slope: 1.52 

square:    R=50 slope: 1.53

triangle:   R=30 slope: 1.54

diamond: R=40 slope: 1.53 

(a) N=24

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
5

6

7

8

9

10

11

ln D
z

ln
 F

n

square: R=50 slope: 1.53 

circle:   R=60 slope: 1.53 

(b) N=32

Figure 5.1: Results for vertical Hertz contact for two different grid sizes: (a) N=24, (b) N=32
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The vertical Hertz contact problem has an exact solution [17, 18]: �w�  � ��!#"� . Our simu-
lations gave

�)�w � -�. < ">=^3 ./-� 0 ���  � 3 . ?@< =^3 ./-� , in good agreement with the exact relationship.
The small difference can be explained by finite size effects.

5.2 Hertz friction

We also wished to see how the Hertz system behave using our full friction model. The resulting
relationship between

���
and

�+�S�#���
	������
is plotted in figure 5.2.
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Figure 5.2: Results for Hertz friction. Some of the curves are moved up by a constant value, to
separate the curves from eachother. (a) N=24, (b) N=32

Our simulation results fit well to a power law dependence
���S�#�o�O	��o���x(� �� , with � JLKbõBA;CED±KTõ 7

for these grid sizes. There might however be finite size effects, and simulation on larger systems
(both larger L and larger R) is needed, to find a reliable value for � as º F G . However, an
interesting observation is that the measured � is not equal to 2/3. It seems like the inclusion of
horizontal effects has moved the exponent closer to 1, compared to a purely vertical consideration
where

�+�S�#���
	������x $ is assumed.
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5.3 Rough surfaces in vertical contact

Having tested the model on the relatively simple Hertz system, we now wished to study self-
affine rough surfaces in contact. First, we looked at the vertical problem: a rough surface is
pushed vertically into an elastic medium (see figure 4.4). The results are found in figure 5.3.

We chose surfaces with Hurst exponents 0.8 and 0.6 as subject for our simulation, both be-
cause HJI KTõKA for fracture surfaces, and because H J�KTõKA

and H J�KTõKC
were the values used by

Batrouni et al [1], thus making the results more comparable.
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Figure 5.3: Results for rough surfaces in vertical contact. Grid size: N=24. One of the curves is
moved up by a constant value, to separate the curves from each other.

Again, our data gives a relatively good power-law fit
�'�� �ML� . The measured exponents areN I 7>õ 7+O for H JLKTõKC

and
N I 7¡õ�7>7 for H J(KbõBA

with system size º J(;7O . However, with only
5 samples at each data-point, the values for

N
have high uncertainties.

Batrouni et al [1], found the relationship
�+�� � � . � <� for H J KTõKC

and
�)�F � � . 3 <� forH JUKTõKA

, by extrapolating to ¿PF G . However, they found large finite size effects, with
N

significantly decreasing for decreasing system size. Batrouni et al have not published any value
for

N
at ¿ J¹;�O . However, a

N
value slightly above

7¡õ�7
for ¿ J%;7O , and

N 6 H J KTõKCu? ô N 6 H JKTõKAu?
fit quite well with the trend of their results.
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5.4 Friction of rough surfaces

Finally, we used our model to simulate the static friction of rough surfaces. The results are found
in figure 5.4.
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Figure 5.4: Results for friction of rough surfaces. Grid size: N=24. One of the curves is moved
up by a constant value, to separate the curves from each other.

We found a relatively good power-law fit, with exponents are �QI 7>õö;-R
for H J*KTõKC

and�SI 7>õö;;T for H JLKTõKA
with system size L=24.

These results are interesting, as they provide a non-linear relationship between load and fric-
tional force. However, there are large uncertainties, and the finite size effects might be large.
Simulations on several, larger system sizes and with many more samples is needed, to be able to
say anything conclusive about the friction of rough surfaces.
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Chapter 6

Suggested extensions and improvements to
the model

6.1 Coupled effects

In section 4.4, we made the assumption that the coupling between vertical and horizontal forces
and displacements is weak. Therefore, we could ignore the coupling-terms in the elastic equa-
tions.

It would, however, be interesting to see how the model would behave with the whole equa-
tions included. If we could compare simulation-results for the original model with results from
simulation where the coupling-effects are included, we would be able to study the effect the
coupling-terms has on the friction of rough surfaces. We would also be able to evaluate the
validity of the assumption that was made in the first place; that the coupling terms could be
ignored.

However, if the coupled terms are included, the friction process can not be divided into
’vertical squeeze’ and ’horizontal pull’. Both the vertical and the horizontal forces must be
evaluated at the same time. We suggest the following solution:

Let us introduce two new vectors
B

and
¾
, whereB J U B � B ��V J W M � - M � � H�H�H M �YX M � - M � � H�H�H M �,X[Z¾ J U ¾ � ¾ ��V J W �@� - �@� � H�H�H �@�\X ��� - ��� � H�H�H ���,X Z

Equation (3.5) can then be re-formulated as:

25



B J ½2Hµ¾
(6.1)

where

½�J^]_ ½ ��� ½ ���½ ��� ½ ��� `a J
]bbbbbbbbbbbbb_

�����S� -�- H�H�H ������� - X ������� -�- H�H�H ������� - X... . . . ...
... . . . ...�����S� X - H�H�H ���8�S� XcX ������� X - H�H�H ������� XcX�v����� -�- H�H�H �����S� - X ������� -�- H�H�H �v����� - X... . . . ...
... . . . ...�����S� X - H�H�H �v���S� XdX �v����� X - H�H�H �v����� XdX

`feeeeeeeeeeeeea
We introduce a matrix × , which includes both ×fØ and ×}ð ; it defines both the contact area,

and the area where the two surfaces are ’bound’ to each other vertically:

× J ]_ ×}Ø êê ×}ð `a J
]bbbbbbbbbbbbb_

î��S� -�- K K K K KK . . .
K K K KK K î±��� XcX K K KK K K î±��� -�- K KK K K K . . .

KK K K K K î±��� XcX

`feeeeeeeeeeeeea
Using the boundary conditions found in section 4.5.1 and 4.6.1, we find that for a given

surface profile, penetration depth �±� and horizontal pulling length ��� :� × H@B is known everywhere� 6Oæß9 × ?+H�¾ is zero everywhere

Using × , we can re-formulate equation (6.1) as follows:

½IHr6{æß9 × ?+H�¾�D ½IH × H�¾ J 6{æß9 × ?+H@B,D × H@B
We introduce è J × H�¾�DL6{æ�9 × ?+H@B which contains all the unknown quantities in our

system. Via the same derivation as in section 4.5.2, we arrive at the following equation:
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689�æ�D�6{æ�D ½}?+H × ?+H è J × H@B (6.2)

Equation (6.2) is on the form Ax=b, and can be solved using, for example, the conjugate
gradient method [32].

Now, we know how to solve the elastic equation for a given �±� , ��� , ×}Ø and ×}ð . However,
we need to re-model the process of ’squeeze, pull and slip’ .

The coupling between horizontal and vertical effects introduce some new complexities:� both À��@�>Â and À��X��Â are dependent on ���� the contact area ×}Ø is dependent on ���� ��� 6 � � ? and �@� 6 ��� ? does not go through zero. (Due to the coupling effects, there are still
horizontal forces even when ��� J�K .)

However, the functions �X� 6 � � ? and �X� 6 � � ? are still linear on the intervals where both ×ÄØ and×}ð is constant.
We suggest the following algorithm:

1. Generate a rough surface

2. Define a penetration depth ÿ �
3. Set initial contact area � � equal to the slice area (see figure 4.5)

4. Initially, set � �.� � �
5. Set ÿ �8�!�
6. Solve equation 6.2, with respect to � , to obtain all forces and displacements..

7. Iterate to find the right
9 ÿ �.�1� : contact area: If there are sites where

� ���S�
(a) set � � �1� and � � �1� at these points

(b) return to 6.

8. Set ÿ � 3 �!�
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9. Solve equation 6.2, with respect to � , to obtain all forces and displacements at ÿ �8� ÿ � 3 . Calculate" � 9 ÿ � 3 : � ÷ � � 9 ÿ � 3 : and
" � 9 ÿ � 3 : � ÷ � � 9 ÿ � 3 :

10. Introduce a new horizontal pulling-distance ÿ �
11. Solve equation 6.2, with respect to � , to obtain all forces and displacements for the new ÿ � . Cal-

culate
" � � ÷ � � and

" �/� ÷ � �
12. Iterate: while there still exists lattice sites where � �/�g0

(a) Find the point with the maximum fraction
� Ñø � ù

(b) Find the point with the minimum
� �

(c) Calculate the ÿ � needed for the first horizontal bond to break:ÿ1��� ú �oá � � ÿ � � ì 0 � $'5�6 û � Ñø � ù ü í � �ih¬Ñ � h Ñ@j �á Æ ��2 ý Ñþ ý ù43 �má Æ � û ý Ñ Ôfk Ñ@j Öþ ý ù Ôfk Ñ@j Ö ü
(d) Calculate the ÿ � at which the contact area changes:ÿ1��� ú �oá � � ÿ � � $(lnm�� � ��� � �ih Ñ � h Ñ@j �á)�o�po���ù �ih Ñ@j �rq �má��ö�po#��ù q
(e) if ÿ1��� ú �oá � � ÿ1��� ú �oá �

i. set � � �1� for the site with the maximum fraction
� Ñø � ù

ii. find the total forces
" ��� ú �öá and

" �S� ú �oá needed for the bond to break

A.
" ��� ú �oá � " � � h Ñs tvufw^Ñh Ñ (the function

" � 9 ÿ � : goes through zero)

B.
" �S� ú �öá � " � � 9 ÿ1��� ú �oá � � ÿ � : �%x ù5� x ù �ih Ñ@j �h Ñ � h Ñ@j

iii. set new ÿ � 3 � ÿ1��� ú �oá �
iv. return to 9.

(f) if ÿ1��� ú �oá � � ÿ1��� ú �öá �
i. set � � �!� and � �.�1� for the site with the minimum

� �
ii. find the total forces

" ��� ú �öá and
" �S� ú �oá needed for the bond to break

A.
" ��� ú �oá � " � � h Ñs tvufw ùh¬Ñ (this function goes through zero)

B.
" �S� ú �öá � " � � 9 ÿ1��� ú �oá � � ÿ � : � x ù � x ù �ih Ñ@j �h¬Ñ � h Ñ@j

iii. set new ÿ � 3 � ÿ1��� ú �oá �
iv. return to 9.

13. Find the friction force
" �S�#�o�O	��o��� � $'5768� " ��� ú �oá � and the maximum normal force

" � � $'5768� " �S� ú �öá �
14. Return to 1. and repeat on a defined number of samples. Average the results over the samples, to

find a point in the static friction law
" �S�#���
	������ � " �S�#���
	�������9 " �;:

15. Return to 1. with another penetration depth ÿ �
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6.2 Two rough surfaces in contact

It would be relatively easy to change our model from studying a hard rough surface in contact
with an elastic half-plane, to studying a hard, rough surface in contact with an elastic, rough
surface.

The boundary-conditions would still hold true:� the deformations are known wherever there is contact� the forces are zero wherever there is no contact

However, to find the deformations at contact points, one would have to take into consideration
both the profile of the hard surface, the ’penetration depth’ �w� , and the undeformed profile of the
elastic surface.

This could be an useful future extension to the model. It would be interesting to study simil-
arities and differences compared to the simplified system used in the original model. According
to research done by Greenwood and Tripp in 1971 [29], a system with two rough surfaces should
“increase the tolerance of non-Gaussian distributions”. Expected behaviour is therefore that the
exponent � in the power law

�'�������
	������x(� �� will become closer to 1.

6.3 Fourier acceleration

As seen from section 5, more numerical work is needed in order to provide quality data for the
friction of rough surfaces. Simulations should be done on much larger system sizes, and with
many more samples at each data point. In order to achieve this, we recommend implementing
Fourier acceleration [33, 34] which will decrease simulation times significantly.
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Chapter 7

Conclusion

We have developed a model for static friction of rough elastic surfaces. A hard, rough surface
is squeezed vertically into an elastic half-space, and thereafter pulled horizontally until it starts
sliding.

The model is based on the theory of elasticity. As a starting point, we used a model developed
by Batrouni et al [1] for vertical contact between rough elastic surfaces. We expanded this model
to include horizontal forces and displacements. We also developed a model for the ’slip’ process
where the horizontal forces overcome the vertical ones, so that the surfaces starts sliding against
each other. Coupling effects are ignored: ’vertical squeeze’ and ’horizontal pull’ are modelled as
independent processes.

The model has been tested against known results, both against Hertz contact and against ver-
tical contact of rough surfaces. Our results were in good agreement with the expected behaviour.

For friction of rough surfaces, our simulation results gave good fit to a power law behaviour:�+�S�#�o�O	��o���±C� �� . However, further numerical simulations are needed to determine the coefficient� with reasonable precision.
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Appendix A

Calculation of the discrete Green functions

The discrete Green functions are found by averaging equation (3.2) over an area � � , which cor-
responds to the discretization size:

yM � J ���8� � � D ����� � � J 7� � e'z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7�D�=;XWQY Z ;^6�7�9\=@?[ � � D 687`9\;¡=X?�N[ � � � ] tuN�tuR

yM � J ����� � � D �v��� � � J 7� � e'z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7�D�=;XWQY Z 9 6�7:9<;>=@?�N[ � � � D _ ;T687:9\=@?[ D ;>=[ " a � �i] tuN�tuR

We calculate �v�8� , ����� , �v��� and �v��� by considering four cases:� ����� : vertical displacements caused by vertical forces� �v��� : horizontal displacements caused by horizontal forces� ����� : vertical displacements caused by horizontal forces� �v��� : horizontal displacements caused by vertical forces

A.1 { Á>Á : vertical displacements caused by vertical forces

yM � J e'z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7�D d;@WQY H ;^687:9 d ?[ � � t>N�tuRJ 7�9 d �WyY � � H e z Ò Æ !#�z � Æ !#� e � Ò

Æ !#�� � Æ !#� 7c N � D\R � t>N�tuR
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J 7�9 d �WyY � � HXe z Ò Æ !#�z � Æ !#� z
¢<£¤ N D �r  ;:D�¦ 6ON�D �r  ;>? � D<R �Nw9 �r  ;:D�¦ 6ONp9 �r  ;¡? � D\R � ¨© tuR
ë

yM � J - �%| Î}+~ � � H �� � 6ON�D �r  ;>?+H@z
¢<£¤ R1D �r  ;:D�¦ 6{R1D �r  ;>? � D�6ON D �r  ;>? �R 9 �r  ;:D�¦ 6{Rx9 �b  ;>? � DL6
N�D �b  ;>? �¡¨©D±6ORvD �b  ;>?+H�z
¢<£¤ N�D �r  ;:D�¦ 6ORvD �b  ;>? � DL6
N�D �b  ;>? �Nw9 �r  ;:D�¦ 6ORvD �b  ;>? � DL6
Nw9 �r  ;>? �¡¨©D±6
Nw9 �r  ;¡?+H�z
¢<£¤ Rk9 �r  ;:D�¦ 6{Rx9 �r  ;>? � D�6ON�9 �b  ;>? �RvD �r  ;:D�¦ 6{R1D �r  ;>? � DL6ONw9 �r  ;>? �m¨©D¹6ORk9 �r  ;>?+H@z
¢ £¤ Np9 �r  ;:D�¦ 6{R 9 �b  ;>? � DL6
Nw9 �r  ;>? �N D �r  ;:D�¦ 6{R 9 �b  ;>? � DL6
N�D �b  ;>? �u¨©� ®¯
where ���8� J y � ùx ù .
This result is also found in ’Contact Mechanics’ by K. L. Johnson [35].

A.2 { NiN : horizontal displacements caused by horizontal forces

yM � J e'z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7�D d;@WQY H _ ;^687:9 d ?[ D ; d N �[ " a � � t>N�tuRJ 687:9 d � ?WQY � � H e z Ò Æ !#�z � Æ !#� e � Ò

Æ !#�� � Æ !#� 7c N � D�R � t>N�tuRD d 687VD d ?WQY � � H e z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� N �6
N � D<R � ? "�!#� t>N�tmRJ 687:9 d � ?WQY � � H e z Ò Æ !#�z � Æ !#� e � Ò

Æ !#�� � Æ !#� 7c N � D�R � t>N�tuRD d 687VD d ?WQY � � HXe z Ò Æ !#�z � Æ !#� £¤ N�D �r  ;¦ 6
N�D �b  ;>? � D\R � 9 Np9 �b  ;¦ 6
Nw9 �r  ;>? � D\R � D�e � Ò
Æ !#�� � Æ !#� 7c N � D\R � t>N ¨© tuR
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J 687VD d ?WQY � � 687:9 d D d ?+HXe z Ò Æ !#�z � Æ !#� z
¢<£¤ N D �r  ;`D�¦ 6ON�D �r  ;>? � D\R �Np9 �r  ;`D�¦ 6ONw9 �r  ;>? � D<R � ¨© tmRD d 687VD d ?WQY � � H e z Ò Æ !#�z � Æ !#� £¤ N�D �r  ;¦ 6
N�D �b  ;>? � D\R � D N�9 �r  ;¦ 6ONp9 �b  ;>? � D\R � ¨© tuR
ë

yM � J - Ò |}+~ � � H �� � 6{R1D �r  ;>?+H�zO¢<£¤ N D �r  ;:D�¦ 6{R1D �r  ;>? � D�6ON D �r  ;>? �Np9 �r  ;:D�¦ 6{R1D �r  ;>? � D�6ON�9 �r  ;>? � ¨©D�6{Rk9 �b  ;>?+H@z
¢<£¤ N�9 �b  ;�D�¦ 6ORk9 �r  ;>? � D�6ONw9 �r  ;>? �N�D �b  ;�D�¦ 6ORk9 �r  ;>? � D�6ON�D �r  ;>? � ¨©D�687`9 d ?°6ON�D �r  ;>?�H@z
¢ £¤ RvD �r  ;:D�¦ 6ORvD �b  ;>? � DL6
N�D �b  ;>? �Rx9 �r  ;:D�¦ 6ORk9 �r  ;>? � DL6ON D �r  ;¡? �¡¨©D¹6�7:9 d ?µ6
Nw9 �r  ;>?+H�zO¢<£¤ Rk9 �r  ;:D�¦ 6{Rx9 �b  ;>? � DL6
Np9 �r  ;¡? �R1D �r  ;:D�¦ 6{R1D �r  ;>? � D�6ONw9 �b  ;>? �>¨©  ®¯
where �v��� J y � Ñx Ñ .

A.3 { Á N : vertical displacements caused by horizontal forces

yM � J e'z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7VD d;XWyY H 6�7`9\; d ?�N[ � � � t>N�tuRJ 687VD d ?°687:9\; d ?;@WQY � � H e z Ò Æ !#�z � Æ !#� e � Ò

Æ !#�� � Æ !#� NN � D\R � t>N�tuRJ 687VD d ?°687:9\; d ?;@WQY � � H e z Ò Æ !#�z � Æ !#� 7; zO¢ _ 6ON D �r  ;¡? � D\R �6
Nw9 �r  ;>? � D\R � a tuR
ë
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yM � J � - Ò | �j� - � � | �� }+~ � � H Z 7; 6ORvD �b  ;>?sz
¢¶_ 6ON�D �r  ;>? � D�6{R1D �r  ;>? �6ONw9 �r  ;>? � D�6{RvD �r  ;>? ��aD 7; 6{Rk9 �b  ;>?sz
¢ _ 6ON�9 �r  ;>? � D�6{R 9 �r  ;¡? �6ON D �r  ;>? � DL6{Rk9 �b  ;>? � aD±6
N�D �r  ;>?`_ � [¡²�³ � ¢¶_ R�D �r  ;N�D �r  ; a 9 � [�²�³ � ¢¶_ Rk9 �r  ;N�D �r  ; a�aD±6
Nw9 �r  ;¡? _ � [�²�³ � ¢ _ Rk9 �r  ;N�9 �r  ; a 9 � [�²�³ � ¢ _ RvD �r  ;Nw9 �r  ; a�a ]
where ����� J y � ùx Ñ .

A.4 { N Á : horizontal displacements caused by vertical forces

yM � J e z Ò Æ !#�z � Æ !#� e � Ò
Æ !#�� � Æ !#� 7VD d;XWyY Hu9 687:9\; d ?�N[ � � � t>N�tuRJ 9 687VD d ?µ6�7�9l; d ?;XWQY � � H e z Ò Æ !#�z � Æ !#� e � Ò

Æ !#�� � Æ !#� NN � D\R � t>N�tuRJ 9 687VD d ?µ6�7�9l; d ?;XWQY � � HXe(z Ò Æ !#�z � Æ !#� 7; z
¢ _ 6
N�D �b  ;>? � D\R �6ONp9 �r  ;¡? � D\R � a tmR
ë

yM � J¹9 � - Ò | �j� - � � | �� }+~ � � H Z 7; 6{R�D �r  ;>?sz
¢¶_ 6ON D �r  ;¡? � DL6{R1D �r  ;>? �6
Np9 �r  ;>? � DL6{RvD �r  ;>? � aD 7; 6{Rk9 �r  ;>?sz
¢¶_ 6ON�9 �r  ;>? � D�6{Rx9 �b  ;>? �6ON D �r  ;>? � DL6{Rx9 �r  ;>? � aD�6ON D �r  ;>? _ � [�²�³ � ¢ _ R1D �r  ;N�D �b  ; a 9 � [�²�³ � ¢ _ Rk9 �r  ;N D �r  ; a�aD�6ON�9 �b  ;>? _ � [¡²�³ � ¢ _ Rk9 �r  ;N�9 �r  ; a 9 � [¡²�³ � ¢ _ RvD �b  ;N�9 �r  ; a&a ]
where �v��� J y � Ñx ù .
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