
FRACTURE ROUGHNESS IN THE ANNEALED FUSE MODEL

T. STRANDEN

DEPARTMENT OF PHYSICS, NTNU, 18. DECEMBER 2002

SUPERVISOR: ALEX HANSEN

Abstract. We have studied the properties of fracture in an annealed fuse model,

with focus on fracture roughness. The results are obtained via numerical simula-

tion. We have found that neither H nor ν are universal quantities for the model.

Both increase for increasing η. The results indicate an asymptotic value close to 1

for H as η → ∞.

Fracture processes are interesting from a fundamental point of view, as well as

being relevant to fields as diverse as material engineering and seismology. Especially

intriguing from a physicist’s perspective is the scaling properties for fracture surfaces,

which has been shown to be universal for a wide range of materials [1, 2, 3, 4, 5, 6, 7].

The propagation of a crack in a material is obviously influenced by the strain dis-

tribution in the material. In addition, disorder in the material introduces a stochastic

element to the fracture propagation. Together, these two properties decide the shape

and roughness of the fracture surface.[8]

One can gain qualitative insights in the fracture process by studying simplified

models, where complicating, non-necessary factors are stripped away. By capturing

a few essential properties of the system, such as strain and disorder, important effects

can be isolated and better understood. Several models should be studied, to make

the final picture as complete as possible.

One particularly successful class of models for fracture is the fuse models [8, 9, 10],

which simplify the description of a continuous material by instead considering a

lattice of bonds. Each bond is represented as a linear resistor which can break

if subjected to too high current. There are two different classes of fuse models,

depending on how they treat disorder: the ’quenched’ disorder models have a disorder

built into the system, while the ’annealed’ fuse models use a probabilistic breaking

rule.

In this work we have looked at a fuse model with ’annealed’ disorder, proposed by

Hansen, Roux and Hinrichsen in 1990 [11]. The probabilistic breaking algorithm for

the method is as follows:

1) to each bond assign a probability pi(t) = Vi(t)η
P

j Vj(t)η proportional with the strain Vi

over the element, to the power of an exponent η ,
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2) select one bond at random, but according to the probabilities pi(t) and

3) break this bond.

The model is similar to the Dielectric Breakdown model (DB) [12], except that

the connection-requirement is dropped. (In DB, only neighbour bonds to the already

existing cracks are candidates to break.) The annealed fuse model has been described

in terms of its fractal dimensions by Hansen et al [11] and Curtin et al [13]. Fractal

dimensions for DB is also known [14, 15]. However, the annealed fuse model has not

earlier been studied with a focus on fracture roughness.

The results presented has been produced by numerical simulation of a two-dimensional,

square lattice of fuses which is subjected to an externally applied stress. The stress

is represented by an applied voltage over the lattice, with the principal axes of the

lattice at ±45◦ on the applied voltage. The current distribution is found by solving

the Kirchoff equations using a conjugate gradient method [16].

The behaviour of the annealed fuse model at the limits η → 0+and η → +∞

can be described respectively by the models screened percolation[17] and Laplacian

random walk (LRW)[18]. In the limit η → 0+, the selection process is random,

but with the restriction that that only bonds within the current-carrying backbone

can be broken. This restriction distinguishes screened percolation (η → 0+) from

classical percolation (η = 0). When η becomes larger, the voltage distribution over

the network plays a more and more important role. In the limit η → +∞ the element

under the largest stress is always selected, and the model becomes equivalent to LRW.

This corresponds to the growth of a single crack, since the highest stress always occurs

at the tip of the crack [13].

Figure 1. Damage profiles for η = 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7 and 8.

A phase transition has been identified at η = 2 by Hansen et al [11]. For η < 2,

failure develops trough proliferation of small defects, while at η > 2 the dominating
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effect is the growth of one large cluster of broken bonds. For η > 2, the model

therefore behaves like DB.

Figure 1 shows the damage profiles for various η. At very small η, the damage is

virtually uniform over the sample, while at increasing η, it becomes more and more

localised. It is apparent from the plot that there is a transition at approximately η

between 2 and 3; for η > 3, the distribution has a clearly bell-shaped form.

The length scale characterising the width of the damage zone, ly =
P

(y−<y>)2

N−1
,

varies with η and L as shown in figure 2.

(a) (b)

Figure 2. (a) ly(η), (b) ly(L)

For η < 2 we expect the model to behave in a percolation-like manner, with a

diverging correlation length ξ ∝ |p − p∞|−ν [19], where p is the density of broken

bonds at failure, while p∞ is the density at which an infinite lattice breaks down.

For classical percolation on a quadratic lattice in 2d, ν = 4
3

[20] . The fluctuations

(< p2 > − < p >2)
1/2

are expected to scale as L−1/ν [21]. The result for η = 0, 5,

η = 1 and η = 1, 5 is shown in figure 3. From this we find that ν increases with

increasing η , as shown in figure 4.

Figure 3. The fluctuations f = (< p2 > − < p >2)
1/2

as a function
of L (ln-ln plot). The equations for the straight lines best fitted to the
data are shown in the figure.
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Figure 4. ν as a function of η.

We define the 50% survival probability, ps as the density at which 50% of the

samples survive. ps then varies with L as ps = p∞ − c
L1/ν [19] where c is a constant,

as shown in figure 5 a). We have used this to find p∞. Figure 5 b) shows p∞ as a

function of η.

For classical percolation in a 2d quadratic lattice, p∞ = 1
2

[20]. For our system,

p∞ < 1
2

for all η, and we have p∞ ≈ 0, 45 in the limit η → 0+. Screened percolation

has a lower p∞ than classical percolation [11]. Therefore, the result p∞(η → 0+) < 1
2

is as expected.

(a) (b)

Figure 5. (a) ps as a function of L−1/ν for various η (each with its
corresponding ν). (b) p∞ as a function of η.

As η increases from 0+, p∞ decreases. When the system enters the localisation

regime, p∞ → 0. Our data give that p∞(η) cross the η-axis for η ≈ 2, 7. This sug-

gests that the transition from the percolation-like regime to the localisation-regime

happens for η somewhat higher than expected from [11]; not at 2, but between 2 and

3. This is consistent with the damage profiles (figure 1). It implicates that either

a) the system changes from percolation-like behaviour to localised behaviour at a

slightly higher η than the phase transition from many small defects to one large

cluster or

b) both transitions happens at the same ηt, , but with 2 < ηt < 3.

In the localisation regime, we can measure the roughness w of the fracture surfaces.

For reasonably large L, this roughness approaches a simple power law: w = LH .
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(a) (b)

Figure 6. (a) w as a function of Lx (ln-ln plot). η = 4, Ly = 40. (b)
w as a function of Ly (ln-ln plot) for a few combinations of Lx and η.

As can be seen in figure 6, the significant system length scale for w is Lx, the system

length perpendicular to the applied voltage. As long as Ly, the system length parallel

to the applied voltage, is sufficiently larger than ly, the roughness is constant over

Ly (to the precision of this analysis).

Figure 7. w as a function of L (ln-ln plot). The equations for the
straight lines best fitted to the data are shown in the figure. The
roughness coefficient H corresponds to the gradient of the lines.

Figure 7 shows w as a function of L for η = 2, 3, 4, 5 and 6. The results for

η = 2 should not be assigned too much weight, because figure 5 (b), as mentioned,

indicate that the system is not yet fully localised at η = 2. We find that H increases

with increasing η, as shown in figure 8. More data need to be collected before the

exact dependency H(η) can be determined. However, the results indicate asymptotic

behaviour towards a limit H → cH as η → ∞, with cH = constant. cH seems to be

close to 1.

As a summary, we can conclude from our data that neither ν nor H are universal

quantities for the annealed fuse model. We find that both ν and H increases for
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Figure 8. H as a function of η.

increasing η. This differs from the results found for, for example, the ’quenched’

fuse model, where ν and H are universal[22, 23], and connected by the relation H =
2ν

1+2ν
[19]. We have not yet generated sufficiently amounts of data to determine the

relations ν(η) and H(η) in detail. But we suggest, based on our data, an asymptotic

value H →≈ 1 as η → ∞ for the annealed fuse model.
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