
1

IPv6 software porting
Bringing IPv6 to the Google code base

Steinar H. Gunderson
IPv6 mercenary



2

A bit too much to do in one night

• Google internal code base is pretty large

 Tens of millions of lines of C++

 Tens of millions of lines of Java

 Somewhat less Python and JavaScript

 …that is not counting Android, Chrome, etc.

• Beginnings: Limited resources (mostly 20% time)

• Need to get visible results and build enthusiasm fast
 Start at bare minimum, expand from there



3

“No magic, just 96 more bits”

• IPv4 and IPv6 have lots of differences...

 Multicast replacing broadcast

 Link-local addresses

 Flow labels

 etc.

• …that don't really matter to most code
 Most back-end systems don't even need to speak IPv6 on the wire

• By far the most important difference is simply different address 
format



4

Address handling strategies
2001:700:oops:32:bit:overflow



5

#0: First, a few non-starters

• Will vary from language to language, but a few from the C world:

 sockaddr_in

 in_addr

 int

• The use of int is especially bad, since it's hard to grep for



6

#1: “The whole world is IPv6”

• Just store everything as IPv6 addresses

• IPv4 addresses are stored as “mapped-v4”
 1.2.3.4 → ::ffff:1.2.3.4 (also written ::ffff:102:304)

• Bonus points: Your OS understands it already
 Unless you have Windows XP, or OpenBSD

• Completely viable strategy, but
 Cumbersome way to deal with IPv4 addresses

 Hard to interface with non-IPv6 code



7

#2: “These things look pretty similar”

• Build some sort of address abstraction
 IPv4 and IPv6 can largely be treated the same way

 Decide what to support and what to leave

• Exact strategy will depend on your implementation language and 
general situation (like almost everything else said here)

 Java has net.util.InetAddress

 Python has ipaddr module (Google)

 C and C++ has, well, nothing good

 Often, people simply use strings, which works surprisingly well

• Google's trio of C++ classes: IPAddress, SocketAddress, IPRange
 Pretty obvious implementations; look at Squid 3.1's IPAddress class for 

something similar

 After a while, ingrained enough that even non-IPv6-conscious teams 
started using them



8

Observation

Code often needs to store and pass around addresses,

but only occasionally understand them 



9

…which brings us to…
224.la.la.la



10

#3: “The whole world is still IPv4” (!)

2001:700:300:1800:230:48ff:fe98:f8d

224.148.180.31

Hash 64 → 24 bits 

• Replace IPv6 addresses by an IPv4 identifier (IPv6 address coercion)

• Actually all of 224.0.0.0/3 (class D + E space) is fine for this purpose

 Gives you 29 bits (probably minus 255.255.255.255)



11

Coercion is awesome

• Not a permanent or perfect solution, but allows you to integrate rapidly 
and easily with almost all of your IPv4 infrastructure

• Essential part of Google's IPv6 software rollout

• Can even happen implicitly in certain cases
 IPAddress class will automatically coerce (and log a warning)

if needed to avoid crash in production

 Logs and HTTP headers store both v4-coerced and real (IPv6) addresses, 
v6-aware applications just use the latter



Practical considerations
sed -i s/ipv4/ipv6/ src/*

12



13

90% done; that leaves only the last 90%

• Most porting is straightforward, but there are some harder problems
as well

• E.g., multihoming
 Not an IPv6 issue per se, but client software will be pretty much forced to 

deal with it if it didn't before

• Other typical case: Highly variable subnetting
 You may need to think carefully about DoS and spam handling

• No magic bullet; you'll need to review such problems on a
case-by-case basis



14

Typical battle plan

• Pretty obvious: Start listening on IPv6, then send IPv6 data
 Watch it crash

 Fix, repeat until it looks OK

• Variant of the above: Change some type from in_addr to IPAddress,
fix the compile errors

• Finding pain points quickly: Grep for IPv4-only types
 If you want to get really fancy, you can do semantic greps with 

Dehydra/Clang (also lets you look at the call graph)

• Once it's working, keep people from breaking it
 Unit tests, regression tests, API deprecations

• The sooner you get something up, the easier it is to build and keep 
enthusiasm

 None or few bonus points for style; coerce, coerce, coerce

 Announce your AAAAs, collect cake



15

Questions?


