
1 Introduction

We consider the game of foosball. A foosball match is between two players, or
two teams of two players each, and customarily continues until one of the sides
has reached k points (typically k = 7 or k = 10, depending on the table in use),
at which point the game ends.

We are interested in developing a Bayesian rating system, similar to Glicko,
but handling the peculiar distribution of the end results of a foosball game.
First, we model foosball as a Poisson process, where each player has an unknown
scoring rate λ, and goals for that player are treated as independent, memory-
less events with that rate. (Although modeling the scoring rate only seems
to rate the offensive skill of a player, it will later be seen that the system is
scale-invariant, and as such defensive skill is also naturally incorporated in this
rate.) The Poisson process has earlier been shown to be a good model for similar
games, such as “real” (non-table) soccer or basketball.

The aim of the rating system will be to estimate the true skill λ for each
player. As it is only possible to measure relative skill, however, a different
output representation is defined, similar to the Elo rating system in chess.

Assume that a player’s true skill is estimated by a Gaussian distribution:

θ ∼ N (µ, σ)

Arbitrarily, we define an unknown player’s µ to be 1500 and σ to be 350,
in line with the Glicko rating system. (Actually measuring the most accurate
initial σ is a problem that will not be discussed here.) These ratings are to be
understood differentially, in that a player that is about 455 rating points over
another player is expected to have twice the scoring rate of the weaker player.
This might seem like an arbitrary calibration; however, it shall be seen that this
calibration results in a player rated 400 points higher than his/her opponent
will win 10/11 of all games on average, which is consistent with the calibration
and Bradley-Terry assumption used in Glicko.

Assume that a player with known strength parameters µ1, σ1 plays one game
(FoosRank does not yet model multiple games in one rating period) against
another player with known strength parameters µ2, σ2, and the end score is s.
(s is here a result such as 10-5 or 6-10 if k = 10; two integers, of which one must
be k and the other one must be in the range [0, k− 1].) Before the game, player
1’s probability density function is simply

f(θ1|µ1, σ1) = Φ(θ1|µ1, σ1)

where Φ is the usual Gaussian pdf with parameters µ1 and σ1, that is (un-
normalized, which will be the convention from here on as the constant factor

does not matter), e
− (x−µ1)2

2σ12 .
After the game, the marginal posterior probability density function for player

1 (the other player’s pdf can be worked out in exactly the same way) is, generally,
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f(θ1|r, µ1, σ1, µ2, σ2) = Φ(θ1|µ1, σ1)

+∞∫
−∞

L(s|θ1, θ2)Φ(θ2|µ2, σ2)dθ2

where L(s|θ1, θ2) is the likelihood of the result s given a performance of θ1
and θ2 from the two players, and Φ(θ2|µ2, σ2) is the probability of the perfor-
mance θ2 from the other player given the prior skill distribution of N(µ2, σ2).

Estimating the likelihood L(s|θ1, θ2) will be the concern of the following
section.

2 Likelihood estimation

As noted before, we choose to model the foosball game as a Poisson process,
with the two players having scoring rate λ1 and λ2, respectively. (The scoring
rate is assumed to be constant throughout the game.) Assume without loss of
generality that the first player wins, ie. the score is k to a, where a < k. The
game length t (the time of the tenth goal from player 1) is governed by the
Erlang-k distribution with rate λ1:

P (t = x) =
λ1
kxk−1e−λ1x

(k − 1)!

In t seconds, how many goals (a) does the other player score? The answer
is given by the Poisson distribution with rate λ2t, with the probability mass
function (pmf)

P (a = k) =
e−λ2t(λ2t)k

k!

Integrating over all possible game lengths t yields the likelihood of the result
k − a given the two rates:

L(a|λ1, λ2) =

∞∫
0

λ1
ktk−1e−λ1t

(k − 1)!
e−λ2t(λ2t)a

a!
dt

=
(
k + a− 1
k − 1

) (λ1+λ2
λ1

)−a
λ1
k−aλ2

a

(λ1 + λ2)k

As can be readily seen, this likelihood is scale-invariant, in that multiplying
the scoring rates λ1 and λ2 by a fixed constant C will not affect the expression.
Thus, we can arbitrarily set λ1 = 1, yielding:

L(a|λ1) =
(
k + a− 1
k − 1

)
λ2
a

(λ2 + 1)k+a
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which is a Pascal distribution with p = λ2
λ2+1 , recognizable as the classical

Bradley-Terry assumption. (The Pascal distribution is also known as the dis-
crete form of the negative binomial or Gamma-Poisson mixture distribution;
the Gamma distribution is the continuous form of the Erlang distribution we
started with, so it is easy to see why the latter name was chosen.)

We now apply our initial assumption that λ2 = λ12d/455 = 2d/455, where d
is the difference in (performance) rating points between player 1 and player 2
(ie. d = θ2 − θ1):

L(a|d) =
(
k + a− 1
k − 1

)
(2d/455)a

(2d/455 + 1)k+a

However, noting that L only depends on d = θ2− θ1 allows us to rewrite the
original formulation of the posterior probability density functions, now:

f(θ1|r, µ1, σ1, µ2, σ2) = Φ(θ1|µ1, σ1)

+∞∫
−∞

L(s|θ2 − θ1)Φ(θ2|µ2, σ2)dθ2

as a convolution, since (f ? g)(t) =
+∞∫
−∞

f(τ)g(t− τ)dτ , giving:

f(θ1|r, µ1, σ1, µ2, σ2) = Φ(θ1|µ1, σ1)(Φ ? L′)(θ1)

where L′(d) = L(−d). Such a convolution can be computed efficiently by
means of the Fourier transform of the two involved functions:

f(θ1|r, µ1, σ1, µ2, σ2) = Φ(θ1|µ1, σ1)(F−1(F(Φ)F(L′)))(θ1)

Unfortunately, the Fourier transform for L′(d) is not expressible with prim-
itive functions (and likewise, the integral itself). However, the relationship also
exists for discrete functions, where the Fast Fourier Transform (FFT) can be
used to calculate circular convolutions. With appropriate zero padding, the two
parts of the convolution can be computed numerically, FFTed, multiplied to-
gether, and finally IFFTed to give the entire right-hand factor of the expression
as a function of θ1. For calculating the entire interesting segment of f(θ1) to the
resolution of n points, this technique requires O(n log n) operations, compared
to O(n2) for naive evaluation of the integral (assuming n points were used to
approximate the integral). This saves considerable processing time in the actual
estimation of the integral, especially when it is used as part of a larger integral
(see below).

3 Team ratings

For teams, we assume µT = µA + µB (the team’s total rating is the sum of its
two members), which implies λT = λAλB . Note that in this process, we double
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the rating constant to 910, or equally, we introduce a factor 0.5 into µT (so the
team’s total rating is the average instead of the sum).

For players 1 and 2 playing against 3 and 4 (whose such combined skill is
termed µT ), the posterior probability density function for player 1 given the
score s becomes

f(θ1|s, µ1...4, σ1...4) = Φ(θ1|µ1, σ1)

+∞∫
−∞

Φ(θ2|µ2, σ2)

+∞∫
−∞

L(s|θ1, θ2, θT )Φ(θT |µT , σT )dθT dθ2
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