

Innovation and Creativity

Large Scale Single Sign-on Scheme by Digital Certificates On-the-fly

Martin Eian ¹ & Stig F. Mjølsnes Department of Telematics October 28, 2005

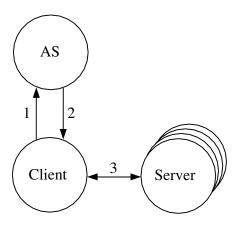
Background

- http://www.item.ntnu.no/~sfm/research/PKI/PKIprosjekt.pdf
- Public Key Infrastructure: provide certified public keys
- PKI deployment a lot slower than initially expected
- The year of PKI" announced annually for more than 10 years
- OASIS action plan for wide adoption of PKI
 - Lack of software support
 - High cost
 - Weak understanding of PKI technology
 - Interoperability problems
 - · Lack of focus on user requirements

Problem description

- X.509: top-down hierarchical view hard to adapt to the real world
 - No global top-level CA
 - More a political problem than a technological one
- Revocation problem: Keys are lost, stolen or compromised in other ways
 - Example: How are certificates revoked on the web?
 - · Serious scalability issues
- Solutions to the revocation problem
 - Certificate Revocation Lists (including delta CRLs)
 - On-line Certificate Status Protocol
 - Short validity periods for certificates

Our approach

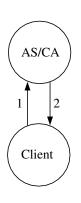

- Bottom-up, examine a single organization
- Large scale access authentication using PKI
 - · Single sign-on
 - Revocation by short validity periods
 - Massive demand on certificate issuing

— Goals

- · Avoid high cost keep it simple
- Gain a better understanding of the technology
- Use existing standards to ensure interoperability
- Focus on a well-known user requirement

Proposed system overview

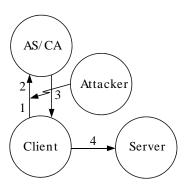
- Credential request
- 2: Credential response
- 3: PK based authentication


Proposed system description

- Centralized authentication (AS)
- Local/distributed authorization and access control (Servers)
- Support for multiple authentication mechanisms
 - Passwords
 - Hardware tokens (public key based)
- Components used
 - Simple Password Exponential Key Exchange (SPEKE), DH key agreement with g = H(P)²
 - Certificate Management Protocol (CMP)
- Security properties
 - Not vulnerable to server compromise
 - Not vulnerable to passive network attacks
 - At most one password guess per active network attack

Issuing of certificate

- Password based
 - Two messages (stateless)
 - Certificate(s) encrypted with SPEKE key
 - No message authentication
 - AS does not verify identity
- Token based / renewal
 - Two messages (stateless)
 - Messages protected by digital signatures
 - AS verifies identity


1: $C_{\underline{,}}PK_{C}, g^{R_{C}}$

 $\underline{g}: g^{R_{CA}},$

 $\{CERT(C, PK_C, SIG_{CA})\}g^{R_CR_{CA}},$ $\{CERT(CA, PK_{CA}, SIG_{CA})\}g^{R_CR_{CA}}\}$

Active attack on password authentication

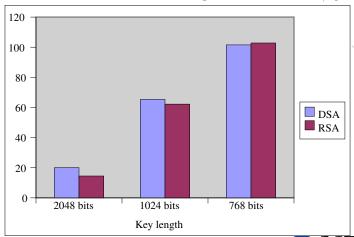
- 1: C, PK_C , g^{R_C}
- 2: C, PK_A, g^{R_C}
- 3: $g^{R_{CA}}$,

 $\{CERT(C, PK_A, SIG_{CA})\}g^{R_CR_{CA}}$

4: $CERT(C, PK_A, SIG_{CA})$

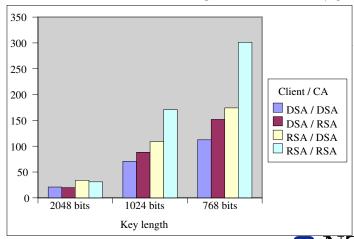
Lessons learned

- AS is not a proper CA in password-only mode
 - does not certify that the public key belongs to the correct identity
- Client must verify the certificate contents
 - public key
 - identity
 - any other data provided by the client
- Client should verify anyhow



Performance test setup

- 2 * Intel Xeon 2.8GHz
- 2 GB RAM
- SuSE Linux Enterprise Server 9
- Server (Servlet) and client written in Java (J2SE 1.5.0_02)
- Bouncy Castle Crypto APIs (1.27)
- Novosec CMP implementation (Release 101)
- Jakarta Tomcat 5.5.9 CMP over HTTP



Issued certificates per second (initial)

Issued certificates per second (renew)

Conclusions

- System performance good enough for organizations with tens of thousands of users
- Experimental implementation handles certificate issuing
- Client application support uncertain, should be investigated further
- More information
 - Paper
 - http://www.stud.ntnu.no/~eian/paper/LargeScalePKI.pdf
 - Master's Thesis
 - http://www.stud.ntnu.no/~eian/master/Masteroppgave_Martin_Eian.pdf
 - Experimental implementation
 - http://www.stud.ntnu.no/~eian/master/sso_software_martin_eian.tar.gz
 - http://www.stud.ntnu.no/~eian/master/sso_software_martin_eian.zip

