
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND
ELECTRICAL ENGINEERING

MASTER’S THESIS

Student’s name: Martin Eian - eian@stud.ntnu.no
Area: Telematics
Title: Large Scale Single Sign-on Scheme by Digital

Certificates On-the-fly
Description:

This assignment is based on the project results of Martin Eian: Public key infras-
tructure in large scale access control. The task is to develop an identity manage-
ment system by refining the proposal specifications for real-time issuing of digital
certificates of public keys with short validity time at the system sign-on procedure.
This solution is proposed to be practical, low-cost, public-key based access control
security that can scale to large organizations with tens of thousands of users. Ex-
perimental implementation of selected parts of the scheme should be carried out
to substantiate the claims.

Start date: January 20, 2005
Deadline: June 16, 2005
Submission date: June 15, 2005
Department: Department of Telematics
Supervisor: Stig Frode Mjølsnes

Trondheim, June 15, 2005

Stig Frode Mjølsnes

Professor

Abstract

This thesis describes a low-cost, scalable, PKI-based system that can be
used for single sign-on to networked resources. A functional implementation
is presented, as well as performance tests that show that the system is able
to scale to tens of thousands of users.

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Background . 10
1.3 Problem description . 11
1.4 Methods . 12
1.5 Report structure . 13

2 Password security 16
2.1 Server attacks . 16
2.2 Client attacks . 18
2.3 Network attacks . 19
2.4 Password security summary 19

3 Single sign-on 21
3.1 Kerberos . 21
3.2 Extensions to Kerberos . 24
3.3 SPX . 25
3.4 SESAME . 27
3.5 Novell NetWare 4 . 27
3.6 PKI . 29
3.7 Single sign-on summary . 30

4 Building blocks 31
4.1 PKAS . 31
4.2 SPEKE . 32
4.3 SACRED . 34
4.4 CMP . 35

5 Construction 39
5.1 Requirements . 39
5.2 Design . 40

1

5.3 Security analysis . 47
5.4 Performance analysis . 51
5.5 Implementation . 53
5.6 Performance testing . 56

6 Conclusions 64
6.1 Key learning points . 64
6.2 Further work . 65
6.3 Summary . 66

A Tomcat configuration 74

B Debug output from server and client 76

C OpenSSL asn1parse of a PKIMessage 81

D OpenVPN test 85

E DSA certificate generation class 89

F RSA certificate generation class 95

G SPEKE modulus generation class 100

H AS/CA implementation 102

I Client implementation 118

J AS/CA configuration file 141

K Client configuration file 143

L Stress test shell script 146

M Java stress test classes 147

N Key generation class 155

O DSA parameter generation class 158

P Hardware info 160

2

List of Figures

1.1 Identity management system overview 11

3.1 Simplified Kerberos V 5 authentication 22
3.2 Kerberos V 5 authentication 23
3.3 KX.509 authentication . 25
3.4 Download of encrypted private key from LEAF 26
3.5 Authentication in Novell NetWare 4 28

4.1 SPEKE . 33
4.2 SPEKE authentication . 33
4.3 Private key download using SPEKE 35

5.1 Issuing of digital certificate . 42
5.2 Issuing of digital certificate and CA root certificate 45
5.3 Active attack on authentication 49

3

List of Tables

1.1 Notation . 15

4.1 PKIMessage and excerpts from PKIBody from RFC 2510 . . . 36
4.2 PKIHeader from RFC 2510 37
4.3 POPSigningKeyInput from RFC 2510 and RFC 2511 38

5.1 CertRequest and CertTemplate from RFC 2511 42
5.2 ProofOfPossession, POPOPrivKey and SubsequentMessage . . 43
5.3 EncryptedValue from RFC 2511 44
5.4 CertRepMessage with contents from RFC 2511 46
5.5 Theoretical performance comparison 52
5.6 Number of performance critical operations 53
5.7 State problems with the Cipher object 55
5.8 Test cases . 58
5.9 Initial authentication, issued certificates per second 59
5.10 Renewed certificates per second 60
5.11 Key generation times in milliseconds 61
5.12 DSA parameter generation times in milliseconds 62

4

Glossary

AES Advanced Encryption Standard: A symmetric
block cipher with a minimum key length of 128
bits

APKAS Augmented PKAS: PKAS where an attacker
must perform a dictionary attack on stolen
server data to be able to impersonate a user

AS Authentication Server: The server responsible
for initial authentication of users in a single
sign-on system

Authentication Verifying a claimed identity
Authorization Granting access based on identity

BPKAS Balanced PKAS: PKAS where an attacker can
directly impersonate a user using stolen server
data

CA Certification Authority: Trusted third party
in a PKI that certifies digital certificates by
authenticating the entity requesting a certifi-
cate, verifying the link between the public key
and identity in the certificate, and then digi-
tally signing it

CBC Cipher Block Chaining: A mode for encrypt-
ing blocks of data using a symmetric cipher,
where each block of encrypted data is used as
input to the next block

CMP Certificate Management Protocol
CRL Certificate Revocation List
CRMF Certification Request Message Format

DH Diffie-Hellman

5

Digital certificate A data structure that contains a public key
along with related information, such as the
identity of the key owner and expiry date

DL Discrete Logarithm
DoS Denial-of-Service: Removing the availability

of information resources
DSA Digital Signature Algorithm: Public-key algo-

rithm that can be used for digital signatures

EKE Exponential Key Exchange: The first pub-
lished BPKAS, uses a password-derived key
to encrypt the public key in a Diffie-Hellman
key exchange

Identification Presenting a claimed identity
Identity Unique name of a person or device
IEEE Institute of Electrical and Electronics Engi-

neers
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IV Initialization Vector: The data used as input

to the first block when using a symmetric ci-
pher in CBC mode

KDC Key Distribution Center: The key server in
Kerberos

LDAP Lightweight Directory Access Protocol
LEAF Login Enrollment Agent Facility: Component

in SPX[32] that stores encrypted user private
keys on-line

MD5 Message Digest 5: A hash function with an
output length of 128 bits

MIT Massachusetts Institute of Technology
MITM Man in the middle: An attacker positioned be-

tween two legitimate users, relaying and pos-
sibly modifying their conversation

6

NDS Novell Directory Server: Server that stores
user credentials in Novell NetWare 4

OCSP Online Certificate Status Protocol

PAS Privilege Attribute Service: The authorization
service in SESAME[52]

PDM Password Derived Modulus: A BPKAS, uses
a password-derived value as the modulus in a
Diffie-Hellman key exchange

PIN Personal Identification Number: A number,
typically four to ten digits, used instead of a
password

PKAS Password-authenticated Key Agreement
Scheme: Key agreement where two parties
generate a strong shared secret key based on
a weak password

PKI Public Key Infrastructure: Infrastructure that
provides certification, distribution and revoca-
tion of digital certificates

PoP Proof of Possession: Protocol field in CMP
that contains proof that the client possesses
the private key corresponding to the public
key in a Certification Request

RFC Request For Comments: Internet “standard”
published by the IETF

RSA Rivest Shamir Adleman: Public-key algorithm
that can be used for digital signatures and en-
cryption

SACRED Securely Available Credentials: A protocol
framework for secure exchange of credentials

SESAME A Secure European System for Applications in
a Multi-vendor Environment

SHA-1 Secure Hash Algorithm 1: A hash function
with an output length of 160 bits

7

SPEKE Simple Password Exponential Key Exchange:
A BPKAS, uses a password-derived value as
the generator of the group in a Diffie-Hellman
key exchange

Strong authentication Authentication by proving knowledge of a se-
cret without revealing the secret itself[32]

TGS Ticket Granting Server: One of two compo-
nents of the Kerberos KDC, accepts TGTs and
hands out service tickets

TGT Ticket Granting Ticket: Initial ticket in Ker-
beros that can be used to obtain service tickets

TLS Transport Layer Security

8

Chapter 1

Introduction

1.1 Motivation

According to [11], information security should provide integrity, confidential-
ity and availability of information. To achieve this goal, access to information
must be restricted. Only authorized individuals should be able to modify the
information (integrity) or read the information (confidentiality). No unau-
thorized individual should be able to prevent such access by an authorized
individual (availability). Authorization is usually implemented by granting
access privileges, and access privileges are associated with a role or an iden-
tity. The identity could be a user name for a computer system, a social
security number for a digital certificate, or an e-mail address for an e-mail
system. To obtain the privileges, you need to prove your identity. The act
of proving your identity is referred to as authentication.

There are several ways to authenticate an individual. [11] lists five factors
that can be used for authentication purposes: Something you know, some-
thing you have, who you are, what you do and where you are. The two most
commonly used factors are something you know, such as a password, and
something you have, such as a smart card or other token.

Strong authentication schemes based on public-key cryptography are widely
deployed throughout the world today. Examples of such schemes are the
challenge-response authentication exchanges in Transport Layer Security (TLS)[2] and
Internet Key Exchange (IKE)[13]. One problem with these schemes is know-
ing which public key belongs to which identity, because the only thing they
prove is that the individual you are communicating with possesses the private
key that corresponds to the public key used for authentication. This prob-
lem is often solved through the use of digital certificates, such as X.509[15]
digital certificates. The certificate contains a public key along with infor-

9

mation that binds the key to an identity. The certificate is then digitally
signed by a trusted third party, often called a Certification Authority (CA).
The CA thus performs the authentication, and its signature states that the
individual in possession of the private key that corresponds to the public key
in the certificate really has the identity listed in the certificate. To make
this practical on a large scale, a Public Key Infrastructure (PKI) is required
to certify, distribute and revoke digital certificates. Many organizations do
not have such an infrastructure, possibly due to the fact that a PKI can be
expensive, complex and difficult to maintain.

This thesis describes a practical, low cost and scalable PKI solution that
can be used for authentication. It is a refinement of the proposed solution
draft from [9].

1.2 Background

In any large scale computer network environment, users access several differ-
ent services, often on different servers. When password-only authentication
is used, users must enter a password every time they wish to access a ser-
vice or server. This quickly becomes cumbersome as the number of different
services increases, and the need to store passwords on all the servers means
that an attacker can get access to password files by compromising one of a
large number of servers. Thus the concept of single sign-on was born. Sin-
gle sign-on basically means that the users authenticate only once, usually
by entering their user name and password, to a central service responsible
for authentication to network services. Password files are only stored on the
servers providing this authentication service. When authenticated, users ob-
tain some sort of digital credentials that can be used to prove their identity
to the other services. The net result is that the user only needs one password,
and that this password is used only once per session.

It may be argued that single sign-on could in some cases actually reduce
the security of a system, because a stolen password in a system using single
sign-on leads to a total system compromise for the user in question, as op-
posed to a partial compromise of an ordinary password authenticated system
with a different password for each service. Furthermore, if users in a single
sign-on system leave their client while logged on, any malicious individual in
the vicinity that has physical access to the client will have full access to all
services that the legitimate user has access to, without the need to enter any
passwords. These are important issues, but this thesis will not discuss the
general security principles of single sign-on versus multiple sign-on any fur-
ther, because the task at hand is to design and experimentally implement a

10

single sign-on solution. Whether or not it is wise to actually use this solution
is another matter entirely, and should be evaluated separately.

1.3 Problem description

An identity management solution should provide both authentication and
authorization. This will be achieved by designing a centralized authentica-
tion service with a distributed authorization mechanism. The authentication
service provides users with digital credentials, or proof of their identity, while
the other servers in the network decide on authorization locally. Figure 1.1
shows how the system should work. First, the client obtains its creden-
tials by authenticating to a central Authentication Server (AS), then it uses
those credentials to authenticate to any number of additional servers, with
authorization being handled by each server. This thesis will focus on the
authentication component of the identity management system. Authoriza-
tion on the different servers could be performed by existing operating system
mechanisms, based on the identity of the user, and will not be further elab-
orated.

AS

Client 3

1 2

Server

1: C −→ AS: Credential request
2: AS −→ C: Credential response
3: C −→ S: Public-key based authentication

Figure 1.1: Identity management system overview

The assignment specifies that the solution should be practical and low
cost, and that it should scale to tens of thousands of users. This was inter-
preted as saying that the solution must support password-only authentica-

11

tion, due to the high cost of deploying hardware tokens for all users. This is
not saying that it is restricted to password-only authentication, so support for
token-based authentication will also be discussed. The scalability is achieved
by making sure that the AS does not need to maintain state. A stateless AS
could use readily available load-balancing solutions to scale horizontally, just
like a cluster of web servers.

The solution presented in this thesis will not provide a mechanism for
distributing server certificates to the servers that the users authenticate to.
This distribution has to be handled by existing infrastructure, but most large
organizations have a configuration management system for their servers, and
such a system could be used to distribute server certificates as well as configu-
ration data. For small organizations server certificates could even be handled
manually.

Another matter that is considered out of scope for the assignment is
the mechanism for initial registration of users and updating user passwords.
Initial registration could be achieved by handing out a one-time password
that could be used at a secured kiosk terminal or “voting booth” to register
and set the initial user password. Updating a password could be achieved
through a web page requiring certificate-based authentication. The user signs
on using the single sign-on solution, and then authenticates to the password
updating service using their digital certificate. To sum it up, the assumption
is that user identities and password verifiers are already stored in the AS.

1.4 Methods

The project work was carried out from January 20 to June 15, 2005 at the
Norwegian University of Science and Technology (NTNU) in Trondheim, Nor-
way. The project plan was divided into three main activities of 6, 10 and 4
weeks1 respectively.

The first activity was information gathering. The two primary goals were
to locate existing solutions that were similar to the one suggested in [9], and
to find building blocks that could be used to construct a new system.

Having gathered information about existing systems, to avoid re-inventing
the wheel, and located suitable building blocks, the second activity focused
on design, analysis, implementation and testing of the proposed solution. The
implementation and testing had a dual focus: First of all the implementation
was to be a proof of concept, to prove that the system design was feasible
in practice. Additionally, performance tests were to give an indication of the

1For the observant readers that have noticed that one week is missing: The missing
week was the Easter holidays.

12

http://www.ntnu.no

hardware needs for such a system based on the number of users and other
system parameters. The security analysis was heavily based on the work of
others, because the building blocks used and other suggested authentication
schemes have been subject to thorough security analysis by the academic
community. Therefore, the security analysis focuses on the authentication
scheme itself, how it differs from other schemes, and new vulnerabilities in-
troduced, as well as suggested countermeasures.

The last of the three main activities was finishing the documentation:
Gathering all the loose ends, and completing the thesis.

An iterative, test-driven approach was used to implement the selected
parts of the system. A minimal system was first implemented, then tested
for functionality. More functionality was added in small increments, then
tested. When the system was functionally complete, it was stress tested,
which revealed several weaknesses with regards to scalability. Improvements
were made, and the implementation - testing cycle continued until the system
was ready for performance testing. Section 5.5 contains a detailed description
of the development cycles.

The motivation for using an iterative approach instead of a water fall type
approach was to minimize risk. With the iterative approach, a functional im-
plementation was obtained early, so that if unforeseen difficulties had arisen,
one would still have an implementation that was usable as a proof of concept.
Furthermore, the development of the experimental system was a learning-by-
doing exercise with a lot of uncertain elements, which is a situation that an
iterative approach lends itself to. The downside of this approach is that the
end result tends to be less structured than when using an approach with a lot
of design work preceding the actual implementation. If the goal had been to
design and implement a production system, then a different approach would
have been more appropriate.

1.5 Report structure

Chapter 2 reviews attacks on password authentication and countermeasures
used to avoid such attacks. It also indicates the possible advantages of a
password-based single sign-on solution compared to conventional password
authentication. Readers familiar with the different kinds of attacks on pass-
word protocols and their countermeasures can skip this chapter.

Chapter 3 presents existing and suggested systems that currently are or
could be used for single sign-on. Any reader that has detailed knowledge of
the system listed in a section title will probably not learn anything new from
that section.

13

Chapter 4 describes the components used for the single sign-on solution.
Any readers that are familiar with P1363.2, Certificate Management Proto-
col (CMP), Securely Available Credentials (SACRED), and password-based
cryptography, in particular Password-authenticated Key Agreement Scheme
(PKAS), can skip this chapter.

Chapter 5 describes the design, security analysis, performance analysis,
implementation and testing of the single sign-on solution. It contains an
overview and analysis of the system design, implementation details and test
results. This chapter should not be skipped.

Chapter 6 summarizes the project, giving recommendations for imple-
mentation of a production system and suggestions for further research. This
chapter should not be skipped.

A few words on notation: The informal notation described on page 9 of [6]
is used for authentication messages throughout this thesis. Additionally, the
conventions listed in table 1.1 are used. In all scenarios presented, a client
acting on behalf of a user wants to authenticate to a server that is connected
to the network. There will be no distinction made between the user and the
client computer acting on behalf of the user in the protocol descriptions, and
the terms “client” and “user” will be used interchangeably, unless explicitly
stated otherwise.

14

C Identity (user name) of client
S Identity (host name) of server
P Password
SP Random value used to “salt” P
TS Time stamp
V Protocol version
H(M) One-way (hash) function applied to the message M
g Generator for the group used in SPEKE, g = H(P)2

p Modulus used for modular arithmetic
HMACKX

(M) HMAC of the message M using the secret key KX

RX Random value generated by X
RSX Long random string generated by X
KX,Y Shared secret key between X and Y
TX,Y Ticket that grants X access to Y
AX Authenticator containing time stamp, generated by X
PKX X’s public key, forms a key pair together with SKX

SKX X’s private key, forms a key pair together with PKX

CERT (X, PKX) Digital certificate containing identity and public key
of X

CERT (X, PKX , SIGY) Digital certificate signed by Y , SIGY =
{H(CERT (X, PKX))}SKY

Table 1.1: Notation

15

Chapter 2

Password security

Authentication using passwords has been used for as long as multi-user com-
puter systems have existed. In order to understand how password-based
authentication can be attacked, and how to protect against such attacks,
this chapter will present the arms race between attacks and techniques used
to defend against them. This understanding is required to be able to design
a secure single sign-on system.

When using password-based authentication, there are three participants:
The client, server and the network. An attacker can try to subvert one or
more of these to gain knowledge of the password or to authenticate without
knowing the password.

2.1 Server attacks

A server that serves multiple users must store enough information to authen-
ticate its users. The simplest approach is to store a file or database with one
entry per user, listing the user name and password. To authenticate, a user
must present the user name and password to the server, which checks that
the password is correct. One vulnerability with this approach is that if an
attacker is able to retrieve the password file or database, all user passwords
are compromised.

To make the attacker’s job more difficult, the server can store a hash of
each password instead of storing the password itself. When verifying a pass-
word, it then computes the hash value and compares this to the value stored.
If they are equal, the user is authenticated. If an attacker is able to retrieve
the password file in this scenario, the passwords are not readily available. The
possible key space of passwords is large: For 8-character ASCII passwords1,

1Counting only printable ASCII characters

16

there are 948, or 252 possible passwords. It is possible to brute force this key
space for an attacker with access to a lot of computational resources, but it
is a time consuming task. However, one fact makes the attacker’s job a lot
easier: Human beings tend to choose passwords that are easy to remember.
As such, it is far more likely that a password is ’August01’ than ’4$|x)!H[’.
This knowledge forms the basis of a dictionary attack. A dictionary attack
is performed by first compiling a dictionary of commonly used words and
phrases, and then running each word through the hash function and com-
paring the result to the hashed passwords in the password file. If a match is
found, the attacker knows the password. More advanced dictionary attacks
even use permutations of the words in the dictionary, such as semi-random
capitalization and substituting numbers for letters. As mentioned, dictionary
attacks work because human beings do not choose random passwords. If an
attacker is able to retrieve the password file on a multi-user system with tens
of thousands of users, several passwords are usually found within a few sec-
onds using freely available tools such as John the Ripper[46]. A commonly
used defense against this type of attack is to enforce a password policy, e.g.
that passwords must be at least 8 characters long, must contain upper case
letters, lower case letters and numbers, must not contain ordinary dictionary
words, and must be changed frequently.

Another technique that is used to make a dictionary attack more difficult
is the use of salt. For each password in the file, a random value, salt, is
concatenated with the password before it is hashed. The salt is stored in
clear text along with the password. Using salt gives two benefits: First, it is
far more difficult to pre-compute a lookup table of password-hash value pairs,
because each password has several possible hash values. Second, it makes the
dictionary attack more difficult, because the password guess must be hashed
once per salt, instead of hashing once, then comparing the result to all the
values in the file. When using salt, two users with the same password might
have different hash values.

So far, the only server attack described is stealing the password file, but
what if an attacker is able to compromise the server and take full control of the
operating system? The authentication software could then be modified to log
all passwords in clear text to a file available to the attacker. This problem
cannot be solved using conventional password authentication, because the
user must present the password in clear text to the server, otherwise the
server has no way of actually authenticating the user. The only defense
is to try to harden the operating system so that an attacker is unable to
compromise the server. Another approach is, of course, to use a single sign-
on solution where passwords are never submitted to servers, only to a central
authentication service.

17

Another trend in server password security is to store password hashes
in a central database or directory. The users still submit their passwords
to the server, but the server performs the password lookup by querying the
database instead of a local file. This technique protects against password file
compromise from the servers, but it does not protect against Trojan Horse
authentication software.

2.2 Client attacks

Client computers generally have fewer users than servers, so attacking a sin-
gle client does not have the same pay off as a successful server compromise,
although an attacker performing a directed attack against a single individual
might target the client used by that person. Directed attacks aside, auto-
mated attacks, such as worms and viruses, are able to attack a large number
of clients simultaneously. These attacks are serious in several ways, but from
a password security perspective they pose four major threats.

The first two threats are already described in section 2.1: Compromise of
password files and Trojan Horse authentication software that logs passwords
in clear text. Even if clients do not store ordinary password files, applications
such as web browsers provide convenience functions to store user passwords.
The passwords are stored in files, encrypted or in clear text, and those files
could be stolen by an attacker. The encryption used in this scenario is usually
password-based, which means that it is possible to perform dictionary attacks
to retrieve the clear text passwords.

The third threat, which is usually specific to clients, is the use of software
or hardware key loggers. These log everything that is entered on the keyboard
of the client, including passwords and other sensitive information.

The fourth and final threat described in this section is overwriting con-
figuration data on the client. This could be used to redirect the client to a
fake server that harvests passwords or other information. If the client does
not authenticate the server it connects to, such an attack is even easier, and
could be carried out by DNS cache poisoning, ARP poisoning, or even URL
spoofing. Server authentication prevents these trivial attacks, but does not
protect against system files being replaced.

Defending against client attacks is extremely hard when using password-
only authentication. If the client is compromised, there is no way to avoid
password compromise, because the user has to enter the password in clear
text on the client to be able to authenticate. One possible line of defense is
to centrally manage client configuration and security updates, to minimize
the risk of client compromise.

18

2.3 Network attacks

Network attacks are generally divided into two categories: Active and passive
attacks. An active attacker sends or modifies information on the network,
while a passive attacker just records traffic.

As described in section 2.1, dictionary attacks are very effective. This
means that an authentication protocol should try to prevent off-line dictio-
nary attacks. An off-line attack is an attack where the attacker learns enough
information from a protocol run to be able to perform a dictionary attack
without having to interact any further with any of the participants in the
authentication protocol. In other words, the attacker captures information
equivalent to that stored in the password file on the server. On-line attacks,
or attacks where the attacker must interact with one of the participants for
each password guess, are less serious, because such an attack can be audited
on the server or client, and countermeasures such as throttling or restricting
the number of failed password guesses can be used.

The most trivial of all network attacks is the passive attack on clear text
communications. If the communication between the client and server is not
encrypted, an attacker with access to the network is able to retrieve the
password by simply recording the network traffic.

One well known active attack is the Man in the middle (MITM) attack.
In this attack, the attacker is positioned between the client and server, and
is able to capture all traffic as well as modify it. MITM attacks are possible
when the authentication protocol does not provide mutual authentication. A
conventional password protocol is vulnerable to such an attack, because the
client does not authenticate the server. Thus, the attacker can act as the
server, redirecting the traffic from the client to itself, then forwarding it to
the real server. By doing this, the attacker will be able to capture the clear
text password.

Replay attacks are another class of active attacks. The attacker records
traffic, such as an authentication message from the client to the server. At
a later point in time, the attacker then replays the traffic, to be able to au-
thenticate. One countermeasure against replay attacks is challenge-response
authentication.

2.4 Password security summary

In a single sign-on system that uses password-only authentication, it is im-
possible to defend against client compromise. If an attacker controls the
client, then the password will be compromised. However, using a central AS

19

provides a number of security benefits, especially on the server side. First of
all, passwords are only stored on the AS. Compromise of other servers does
not give the attacker access to password files. Second, users never submit
their passwords to the servers, only to the AS. This prevents the Trojan Horse
authentication software scenario from section 2.1. Naturally, this means that
the AS must be protected at all costs. Compromise of the AS equals com-
promise of password data for all users in the system. The reasoning behind
centralizing password data is that it is easier to protect a few central servers,
running only an authentication service, than to protect hundreds of different
servers running all sorts of different services.

The effect on network attacks is not so clear. Some single sign-on so-
lutions, such as Kerberos, are vulnerable to off-line dictionary attacks by
performing a passive network attack (eavesdropping). Other solutions, usu-
ally based on public-key techniques, are not vulnerable to either passive or
active network attacks.

As a conclusion, a password-only single sign-on solution protects against
server attacks, although it does this by moving the vulnerability to a central
AS. It provides no protection against client attacks. It may provide protection
against network attacks, but this must be examined carefully.

20

Chapter 3

Single sign-on

There are several different single sign-on solutions in use today. Some solu-
tions, such as Kerberos, are based on secret-key cryptography, while others
are based on public-key cryptography. There are also hybrid systems that
combine the two approaches. In this chapter, existing and suggested solu-
tions will be presented and analyzed. The goal is to try to learn from previous
work, to avoid common errors and to gather ideas for the system design.

3.1 Kerberos

Kerberos[43] version 5 is probably the most widely deployed single sign-on
solution used for computer access to networked resources today. Kerberos was
originally developed as part of Project Athena at the Massachusetts Institute
of Technology (MIT), [20] gives an overview of the design. Kerberos versions
1 through 3 were only used internally at MIT, while version 4 saw widespread
use outside of MIT. The newest version of Kerberos, version 5, is available
in several open source implementations[44][45], is standardized as Request
For Comments (RFC) 1510[21], and is the default authentication mechanism
in Microsoft Windows 2000[56] and 2003[57]. No treatise on single sign-on
solutions would be complete without Kerberos.

Kerberos is, as mentioned previously, based on symmetric cryptography.
Kerberos uses a Key Distribution Center (KDC) that shares a secret key
with all entities in the network. The shared secrets with other computers
are strong keys, while the shared secrets with human users are weak keys
derived from memorizable passwords. The idea is that the password is only
used to authenticate to the KDC, not to other computers. An overview of
Kerberos V 5 authentication is presented here, but superfluous details are
omitted. For a more detailed description see [21].

21

http://www.mit.edu/
http://www.mit.edu/

When users wish to access a server, they request a digital ticket from
the KDC. The KDC generates and sends a session key encrypted with a key
derived from the user’s password, and a ticket encrypted with the server’s
secret key. The ticket contains the server’s identity, the user’s identity, the
client’s IP address, a session key, a time stamp and a validity period. When
the client forwards the ticket to the server, it is validated by decrypting
it with the server’s secret key. Additionally, an encrypted authenticator
value containing the user’s identity, client’s IP address and a time stamp
is sent together with the encrypted ticket. The authenticator is decrypted
by the server using the shared session key from the ticket, and the client is
authenticated by checking that the time stamp is current. The whole process
is illustrated in figure 3.1.

KDC

Client Server3

1 2

1: C −→ KDC: C, S,RC

2: KDC −→ C: {KC,S, RC}KC , {TC,S}KS

3: C −→ S: {AC}KC,S, {TC,S}KS

Figure 3.1: Simplified Kerberos V 5 authentication

One problem with the simplified Kerberos authentication in figure 3.1 is
that the client has to store the password for the system to have the single
sign-on property. To avoid storing the password on the client, the KDC
is logically split into two separate functions, an AS and a Ticket Granting
Server (TGS). In practical implementations, the AS and TGS usually reside
on the same physical server. First, the client obtains a Ticket Granting Ticket
(TGT) from the AS. This TGT typically has a lifetime of about 8 hours, and
is used whenever the client needs a ticket from the TGS. The TGS provides
ordinary service tickets, just like the KDC in figure 3.1. The full Kerberos V

22

5 authentication is illustrated in figure 3.2.

AS

Client Server5

TGS

1 2
3

4

1: C −→ AS: C, TGS, RC

2: AS −→ C: {KC,TGS, RC}KC , {TC,TGS}KTGS

3: C −→ TGS: {AC}KC,TGS, {TC,TGS}KTGS, S, R′
C

4: TGS −→ C: {KC,S, R′
C}KC,TGS, {TC,S}KS

5: C −→ S: {A′
C}KC,S, {TC,S}KS

Figure 3.2: Kerberos V 5 authentication

Kerberos V 5 has a number of known security issues, referred to as “Envi-
ronmental assumptions” in RFC 1510[21]. The most serious of these is that
an attacker can mount an off-line password dictionary attack just by observ-
ing the network traffic when a user receives a TGT, shown as message 2 in
figure 3.2. The attack is carried out by guessing a password, deriving the
corresponding secret key, and trying to decrypt the captured traffic. If the
trial decryption yields a valid message then the password guess is correct.
Another vulnerability is that Kerberos relies on the use of time stamps to
defeat replay attacks, and therefore all participants must have synchronized
clocks. Attacks on the network time protocols may allow an attacker to
replay an old, expired authenticator.

There are at least three noteworthy differences between ticket-based au-
thentication in Kerberos and challenge-response authentication schemes based
on public-key cryptography: First, in Kerberos, the AS and TGS generate
all the session keys, as opposed to e.g. TLS[2], where the client and server
mutually generate a shared session key. This means that all traffic on the
network can be decrypted by either the AS or the TGS, because one of them
knows the session key. The CA in a PKI, on the other hand, is not able to

23

decrypt any traffic at all. Second, Kerberos relies on cached authenticators
and loosely synchronized clocks to avoid replay attacks. Challenge-response
authentication using public-key techniques can be constructed so that they
are not vulnerable to replay attacks, without any need to cache authentica-
tors or reliance on clock synchronization. Third, the KDC shares secret keys
with all principals, while a CA just certifies public keys. This means that a
KDC compromise in Kerberos is far more devastating than a CA compromise
in a PKI, assuming that the CA does not know the private keys of its users.

3.2 Extensions to Kerberos

To address vulnerabilities or provide new functionality, several extensions to
the Kerberos authentication protocol have been proposed. This section will
present an overview of some relevant extensions.

First of all, to avoid the off-line password guessing attack, and to al-
low authentication to a KDC without the need for a pre-shared secret key,
PKInit[33] was designed. This extension uses public key cryptography for
the initial authentication (messages 1 and 2 in figure 3.2), which removes the
vulnerability where an attacker can verify password guesses just by capturing
network traffic. PKInit is not yet standardized as an RFC, it is currently an
Internet Draft. PKInit assumes that a PKI is already deployed, which is an
assumption that does not hold for a large number of organizations.

KX.509[8][22], designed and implemented at the University of Michigan, is
conceptually the opposite of PKInit. Where PKInit uses a PKI to bootstrap
Kerberos, KX.509 uses Kerberos to bootstrap a PKI, by using a Kerberos-
enabled CA referred to as the KCA. The KCA may be integrated with the
KDC, or an independent service altogether. When a client needs a certifi-
cate, it will first generate a key pair, then send the public key along with
its Kerberos credentials to the KCA. The KCA will verify the credentials,
then construct and sign a digital X.509 certificate. KX.509 shares several
properties with the proposed solution in [9]: It generates key pairs on de-
mand, signs certificates on-the-fly, and uses password-only authentication to
bootstrap a PKI. Another interesting detail is that the UNIX and Mac OS
versions include an implementation of a PKCS#11[51] software token, to
maximize the number of compatible client applications: If an application
supports PKCS#11 cryptographic tokens, then it supports KX.509. The
Windows version uses the Windows Registry to store keys.

The process of acquiring a signed certificate in KX.509 is illustrated in
figure 3.3. It is assumed that the client has already obtained a service ticket
for the KCA by performing steps 1-4 in figure 3.2. Step 1 in figure 3.3

24

http://www.kx509.org/

corresponds to step 5 in figure 3.2. Before the first message is sent, the client
generates an RSA key pair. The RSA public key is submitted to the KCA
along with credentials and a keyed HMAC. The KCA returns a signed X.509
certificate, which can be used for public-key based strong authentication.

KCA

Client Server3

21

1: C −→ KCA: {AC}KC,KCA, {TC,KCA}KKCA, PKC ,
HMACKC,KCA

(V, PKC)
2: KCA −→ C: CERT (C, PKC , SIGKCA),

HMACKC,KCA
(V, CERT (C, PKC , SIGKCA))

3: C −→ S: TLS handshake or equivalent

Figure 3.3: KX.509 authentication

Due to the off-line password guessing vulnerability in Kerberos, there
have been a lot of suggestions for alternatives for initial authentication or
pre-authentication. There are currently no RFCs on the subject. [35] gives
an overview of the different suggestions, but it expired as an Internet Draft
on December 22, 2003. Chapter 4 will look further into one of the suggestions
from [35]: The use of password authenticated key exchange.

3.3 SPX

On January 25 1991, SPX[32] was published, both as a protocol description
and as a reference implementation. SPX was an attempt to provide the same
authentication functionality as Kerberos by using public-key cryptography
with X.509 certificates. Its aim was to provide a scalable infrastructure for

25

mutual authentication, without the need for globally trusted third parties or
CAs.

SPX is complex, and a thorough analysis will not be performed here, but
there are two aspects of SPX that are relevant to the task at hand.

The first one is the Login Enrollment Agent Facility (LEAF). The LEAF
stores users’ private keys, encrypted using a symmetric algorithm with a hash
of the user’s password as the encryption key. Additionally, the LEAF stores
a hash of the passwords, using a different hash function than the one used
for generating the encryption key. Users authenticate to the LEAF using
their user name and the hashed password, encrypted with the LEAF public
key. The LEAF public key is assumed to be distributed to all clients using
an out-of-band mechanism. When authenticated, users are able to retrieve
their encrypted private key. The authentication and retrieval is illustrated
in figure 3.4.

LEAF

Client

1 2

1: C −→ LEAF : C, {TS, RC , H(P)}PKLEAF

2: LEAF −→ C: {{SKC}H ′(P)}RC

Figure 3.4: Download of encrypted private key from LEAF

The other interesting aspect of SPX is that instead of storing a long-
term private key on an untrusted client computer, a temporary key pair is
generated, and the public part of the key pair is wrapped in a certificate and
signed by the user’s long-term private key. After the certificate is signed, the
long-term private key is destroyed. This is a very early reference to on-the-fly
generation and signing of key pairs used for public-key based authentication.

26

3.4 SESAME

Secure European System for Applications in a Multi-vendor Environment
(SESAME)[52] was initiated as an effort to implement the standard ECMA-
219[54], which was released in January 1995. SESAME is a security frame-
work with both an Authentication Service (AS) and a Privilege Attribute Ser-
vice (PAS). The PAS provides authorization. Since this thesis deals strictly
with authentication, only the AS will be discussed.

Due to the widespread use of Kerberos at the time, the developers decided
that the SESAME implementation should be compatible with Kerberos. The
SESAME authentication service was therefore implemented using the same
mechanisms as Kerberos, but with the addition of optional public-key based
authentication, similar to PKInit[33]. From an authentication viewpoint, this
works exactly like the authentication illustrated in figure 3.2 from section 3.1.
In a nutshell, SESAME authentication is Kerberos with “PKInit”.

3.5 Novell NetWare 4

Novell NetWare version 4 contains a mechanism for password-based single
sign-on, using public-key cryptography. [24] gives an overview of the au-
thentication process, which is illustrated in figure 3.5. The Novell Directory
Server (NDS) stores users’ public keys, encrypted private keys, hashed and
salted user passwords and the corresponding random salts, one salt per user.
The authentication protocol uses four messages to avoid giving an attacker
the encrypted private key before the client is authenticated, this is to avoid
off-line password dictionary attacks by trial decryption of the private key.
The client authenticates to the NDS in message 3 in figure 3.5, by encrypting
the random challenge from the NDS with the hashed password. The server
authenticates to the client in message 4, by using the nonce RC as part of
the message. The protocol description in [24] does not specify how the client
obtains its public key, although it would be trivial to include this value in
message 4. Figure 3.5 therefore includes the public key as well, to make the
description complete.

There is one major problem with the authentication protocol used in
Novell NetWare 4. [24] states:

The user will need the server’s public RSA key for Step F. This is
obtained by querying NDS before Step F and reading the Public
RSA Key attribute of the server object. It is important to note
that any unauthenticated client has access to the Public RSA key
attribute.

27

NDS

Client Server5

1 42 3

1: C −→ NDS: C
2: NDS −→ C: SP , RNDS

C: KC,NDS = {RNDS}H(SP , P)
3: C −→ NDS: {RC , RSC , KC,NDS}PKNDS

4: NDS −→ C: {RC , SKC ⊕RSC , PKC}KC,NDS

5: C −→ S: Public-key based strong authentication

Figure 3.5: Authentication in Novell NetWare 4

Step F corresponds to message 3 in figure 3.5. [24] does not specify how the
client verifies that the public key obtained is indeed the correct one. If it does
not validate the public key, an active attacker impersonating the NDS could
learn enough information to perform an off-line password dictionary attack
just by sending message 2, sending its own public key, and then decrypting
message 3 with its own private key. It would then be possible to do trial de-
cryption of {RNDS}H(SP , P). The attacker could simulate a network failure
after message 3 to avoid detection. This attack can be avoided by distributing
the NDS public key to all clients using an out-of-band mechanism.

It should also be noted that, in contrast with the LEAF in SPX, the
NDS is able to decrypt the private keys of its users, due to the fact that
H(SP , P), which is stored on the NDS, is used as the encryption key. LEAF
makes an effort to avoid this by using two different hash functions, one for
authentication and another one for encrypting the private key.

28

3.6 PKI

The last single sign-on mechanism described in this chapter is public-key
based authentication supported by a PKI. If a PKI is in place to manage
digital certificates, existing strong authentication mechanisms, such as those
provided by TLS, can be utilized. As mentioned in the introduction, the
problem is that such an infrastructure is usually not available. Had a PKI
been in place, there would not be a need for other single sign-on solutions.
The definition of a PKI in the introduction states that it must provide cer-
tification, distribution and revocation of digital certificates.

To provide certification, a PKI usually has a CA that certifies digital
certificates by signing them. The CA root, or self-signed, certificate is dis-
tributed out-of-band to all members of the PKI. When users wish to enroll,
they have to prove their identity to the CA. The CA then verifies that the
user possesses the private key that corresponds to the public key in the dig-
ital certificate before it signs the certificate. All members of the PKI trust
that the CA does not sign a fraudulent digital certificate.

Distribution of digital certificates is not a major problem, one way to do it
is to put all the certificates in a public directory, and provide access through
Lightweight Directory Access Protocol (LDAP)[34]. Another solution is to
let all members of the PKI carry their own certificates. When authenticating,
they would simply present their certificate to their peer, who would be able
to verify the CA signature on the certificate using the public key from the
CA root certificate.

Providing revocation of digital certificates is a challenge in any PKI. There
are three main approaches towards solving this. The first one is to regularly
post a Certificate Revocation List (CRL) that contains all the certificates
that are revoked. This approach does not scale well, especially if there are a
lot of users in the PKI and certificates have long lifetimes, as the CRL would
have to contain all revoked certificates that have not yet expired. Another
issue is that real-time revocation of certificates is not possible, clients must
download the CRL on regular intervals, not check it every time they perform
an authentication. One workaround is the use of a delta CRL, that only
specifies the changes from the previous CRL. The second approach is to have
an online service that provides certificate status information in real-time. An
example of a protocol providing such a service is the Online Certificate Status
Protocol (OCSP)[26]. The problem with this approach is that all participants
must be on-line whenever they wish to authenticate, although this is for
obvious reasons not a problem for authentication to on-line services. Another
potential issue is the amount of traffic generated, every single authentication
generates an OCSP request. The third, and probably simplest, approach is

29

to issue certificates with very short lifetimes. To be able to do this, the whole
process of issuing certificates needs to be automated, especially if the solution
should be able to scale to tens of thousands of users. One problem with using
short certificate lifetimes as a revocation mechanism is that it introduces a
reliance on synchronized clocks, just as in Kerberos.

3.7 Single sign-on summary

There is one aspect of a secure system that is not addressed by a PKI: Private
key management. A PKI handles public keys, but on the assumption that all
participants are able to keep their private keys private. One way to assure this
is to use hardware tokens to store the private keys. The token itself would
perform the cryptographic functions that use the private key, so that the
key never leaves the hardware token, even if used on a compromised client.
One example of such a token is a smart card, which acts both as storage
and as a cryptographic processor. If hardware tokens are not available, one
could instead store encrypted private keys on an on-line server. Users would
then be able to download their private keys, but only the user that knows the
password that decrypts the key will be able to use it. A third approach would
be to avoid storing keys altogether, and instead generate everything on-the-
fly. If one takes a closer look at the solutions presented in this chapter, as
well as the SACRED protocol in section 4.3, one would see that they employ
one or more of these three techniques. Plain Kerberos, KX.509 and SESAME
generate credentials, in the form of tickets or digital certificates, on-the-fly.
In Novell NetWare 4 and SACRED, users download an encrypted private key.
SPX uses a hybrid approach where users download an encrypted private key,
use that key to sign the public part of a key pair generated on-the-fly, and
then destroy the downloaded private key. Finally, the solutions that rely on
a PKI, such as SESAME with public-key based authentication and PKInit,
as well as the more general public-key based system supported by a PKI, are
in principle able to use any one of the three approaches.

30

Chapter 4

Building blocks

In addition to the solutions presented in chapter 3, there are several other
techniques that are useful as building blocks for the design of a PKI-based
single sign-on solution. This chapter contains a review of a few useful proto-
cols and schemes, and forms the last part of the background material needed
for the construction of the system.

4.1 PKAS

The field of password-based cryptography was mostly non-existent until 1992,
when [5], the specification of Exponential Key Exchange (EKE), was pub-
lished. Following EKE, a large number of protocols for password-authenticated
key agreement were developed and published. Today, the Institute of Elec-
trical and Electronics Engineers (IEEE) are currently working on standard-
izing password-based cryptography through its P1363.2 working group. At
this point in time, P1363.2 has not been published as a standard, but a
draft[49] is available. Another useful resource is [17], a collection of links to
research papers in the field of password-based cryptography, maintained by
David P. Jablon, the inventor of Simple Password Exponential Key Exchange
(SPEKE).

P1363.2 describes two general approaches: Downloading a private key
and PKAS. PKAS is further subdivided into Balanced PKAS (BPKAS) and
Augmented PKAS (APKAS). A BPKAS is a scheme where the AS stores data
that are password-equivalent. That is, although a password file compromise
might not directly reveal the passwords, it reveals enough information for
an attacker to impersonate any user. Schemes that are classified as BPKAS
include EKE[5], SPEKE[18] and Password Derived Modulus (PDM)[19]. An
APKAS, on the other hand, protects against password file compromise. Even

31

if the password file is stolen, the attacker has to perform a dictionary attack to
be able to impersonate a user. Schemes that are classified as APKAS include
AMP[23], B-SPEKE[16], A-EKE[4], PDM1, SRP-3[36] and SRP-6[37]. In
general, a scheme classified as APKAS will be more complex and require
more computational resources than one classified as BPKAS. The advantage
is that the APKAS provides some protection in the event that the password
file is compromised.

Most of the password-based key agreement schemes are constructed us-
ing a modified Diffie-Hellman (DH) key exchange[7]. In EKE, the DH public
key is encrypted using a password-derived key. In SPEKE, the generator g
in the DH group is derived from the password. In PDM, the modulus p of
the modular arithmetic operations in DH is derived from the password. In
general, the different approaches use a password-derived value as a compo-
nent of one of the parameters of the DH key exchange. Of all the different
schemes mentioned, only SPEKE will be presented in detail. The motivation
for choosing SPEKE is its simplicity, although any BPKAS would be usable
for the purpose of constructing a single sign-on system. The motivation for
choosing a BPKAS instead of an APKAS is fully explained in section 5.1.

4.2 SPEKE

SPEKE provides authenticated key exchange, and is performed in two steps.
The key exchange, shown in figure 4.1, uses the user password to generate
the group parameter g in the DH key exchange. The value is computed
as g = H(P)2. The server stores user names and corresponding values of
g. Additionally, both server and client could be pre-configured with p, the
modulus for all the modular arithmetic operations. The SPEKE specification
recommends that p should be a safe prime, that is, p = 2q + 1, where q is
also prime.

After the key exchange, the parties compute a shared secret key. The
client computes K = (gRC)RS , while the server computes K = (gRS)RC .
To provide forward secrecy, both client and server compute the session key
KC,S = H(K). After successfully computing the session key, the client and
server may authenticate each other. A simple authentication process is shown
in figure 4.2. An HMAC or any other mechanism verifying the knowledge
of a shared secret could be used in place of the repeated hashing shown in
figure 4.2.

There are several constraints that must be applied to the basic SPEKE
illustrated in figures 4.1 and 4.2 to thwart known attacks. One of them is

1PDM has two variants, one is a BPKAS while the other is an APKAS

32

Server

Client

1 2

1: C −→ S: C, gRC mod p
2: S −→ C: gRS mod p

Figure 4.1: SPEKE

Server

Client

3 4

3: C −→ S: H(H(KC,S))
4: S −→ C: H(KC,S)

Figure 4.2: SPEKE authentication

already applied, by squaring the value H(P), so that g = H(P)2, instead of
just using g = H(P). The reason for this is that it forces the exponentials
gRC mod p and gRS mod p to be generators of the subgroup of order q. Re-

33

calling that p = 2q + 1, this protects against partition attacks on gRC and
gRS . One more constraint is that both parties check that K 6= 1 after the
key exchange is completed, to avoid subgroup confinement of K. Further-
more, each party must check that gRX 6= 0, otherwise an attacker could force
a shared session key K = 0. SPEKE bases its security on the intractabil-
ity of the Discrete Logarithm (DL) problem, for a detailed description of
the DL problem see section 3.6 of [27]. In practice, this means that p must
be sufficiently large to make the DL problem intractable. A p of 1024 bits
length is usually considered sufficient. Finally, both parties must verify that
p and q are indeed prime, unless p is distributed out-of-band, as mentioned
previously. Details of these constraints are presented in section 4 of [18].

One recent attack on SPEKE is described in [38]. The attack is partic-
ularly serious when a short Personal Identification Number (PIN) is used in
place of a password, although SPEKE using alphanumeric passwords might
also be vulnerable. The attack is performed by finding exponential equiva-
lence classes among the passwords, so that several password guesses may be
performed in a single attack. [38] recommends the use of a hashing function,
together with a large password space, to keep the probability of two hashed
passwords being exponentially equivalent as low as possible. When using
SPEKE for single sign-on, a reasonably large password space is used, and
the passwords are hashed, so this attack should not be practical. However,
one should keep an eye on recent developments in finding exponential equiv-
alence classes from the output of well-known hash functions such as Message
Digest 5 (MD5)[30] and Secure Hash Algorithm 1 (SHA-1)[53]. To quote
[38]:

After all, hash functions such as SHA-1 and MD5 were not de-
signed to break exponential equivalence between integers.

One last comment on SPEKE which is important for anyone that wishes
to use it in an implementation is that it is patented in the United States.
The US patent number is 6,226,383, and it was issued in 2001, so the patent
expires in 2018.

4.3 SACRED

At the 1999 Internet Society Network and Distributed System Security Sym-
posium, Radia Perlman and Charlie Kaufman presented a paper[29] dis-
cussing the use of strong password protocols for authenticated download of
credentials, such as encrypted private keys used for public-key cryptography.
Work outlining a framework for the secure download of credentials continued,

34

and in 2001 RFC 3157[3] stated the requirements for a protocol specification.
Based on these requirements, the Informational RFC 3760[12], an abstract
protocol framework for SACRED, was published in April 2004. Finally, in
June 2004, the protocol specification for SACRED was published as Inter-
net Engineering Task Force (IETF) RFC 3767[10]. The protocol specifies
two different authentication mechanisms: Strong password protocols, such
as SPEKE, and TLS mutual authentication.

As a source of building blocks for a single sign-on protocol, [29] is the
most interesting, because the SACRED specifications do not specify the au-
thentication protocol flow. Perlman and Kaufman, however, describe a lot of
different protocols in their paper, ranging from two to six messages each. The
protocols are based on SPEKE and EKE. Their two-message protocol using
SPEKE is illustrated in figure 4.3. The shared SPEKE key, H(gRCRS mod p),
is replaced by KC,S to enhance readability. See [29] for a description and secu-
rity analysis of the protocols, and see section 4.2 for a description of SPEKE.

Server

Client

1 2

1: C −→ S: C, gRC mod p
2: S −→ C: gRS mod p, {SKC}KC,S

Figure 4.3: Private key download using SPEKE

4.4 CMP

CMP, specified in RFC 2510[1], and Certification Request Message Format
(CRMF), from RFC 2511[25], define a protocol framework and message for-
mats for maintaining a PKI. CMP is comprehensive, it covers everything
from initial registration to certification and revocation of certificates, with a

35

large number of different actors. Due to its complexity, only a tiny subset
of CMP is needed for the proposed system: The Certification Request and
Certification Response messages between a client and the CA, as well as the
Error Message.

The central element of CMP is the PKIMessage, which contains a PKI-
Header and a PKIBody part, as well as optional PKIProtection and extraC-
erts fields. All messages in CMP are of type PKIMessage, and the struc-
ture of the PKIHeader is the same for all these messages. The PKIBody,
however, has a different structure based on the message type, but in the pro-
posed system the only possible values for the PKIBody are CertReqMessages,
CertRepMessage and ErrorMsgContent, used for the Certification Request,
Certification Response and Error Message respectively. The PKIMessage
ASN.1 sequence, as well as the relevant parts of the PKIBody ASN.1 se-
quence, are presented in table 4.1. The PKIHeader is presented in table
4.2.

PKIMessage ::= SEQUENCE {
header PKIHeader,
body PKIBody,
protection [0] PKIProtection OPTIONAL,
extraCerts [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL

}

PKIBody ::= CHOICE { -- message-specific body elements
cr [2] CertReqMessages, --Certification Request
cp [3] CertRepMessage, --Certification Response
error [23] ErrorMsgContent --Error Message

}

Table 4.1: PKIMessage and excerpts from PKIBody from RFC 2510

There are two fundamental concepts of CMP that should be thoroughly
understood before reviewing the system design: Proof-of-Possession (PoP) and
message protection. PoP is described in section 2.3 of RFC 2510. In CMP,
the PoP contains a proof that the client making a Certification Request does
indeed know the private key associated with the public key in the request.
The PoP could be a digital signature, a HMAC, or simply a request for the
CA to encrypt the digital certificate issued. Message protection, described in
section 3.1.3 of RFC 2510, is a field used to provide message integrity, which
is achieved through the use of a HMAC or digital signature.

Section 2.2.2 of RFC 2510 states that a CMP implementation must sup-
port the“Basic authenticated scheme”from section 2.2.2.2 to be a conforming

36

PKIHeader ::= SEQUENCE {
pvno INTEGER { ietf-version2 (1) },
sender GeneralName,
-- identifies the sender
recipient GeneralName,
-- identifies the intended recipient
messageTime [0] GeneralizedTime OPTIONAL,
-- time of production of this message
protectionAlg [1] AlgorithmIdentifier OPTIONAL,
-- algorithm used for calculation of protection bits
senderKID [2] KeyIdentifier OPTIONAL,
recipKID [3] KeyIdentifier OPTIONAL,
-- to identify specific keys used for protection
transactionID [4] OCTET STRING OPTIONAL,
-- identifies the transaction; i.e., this will be the same in
-- corresponding request, response and confirmation messages
senderNonce [5] OCTET STRING OPTIONAL,
recipNonce [6] OCTET STRING OPTIONAL,
-- nonces used to provide replay protection
freeText [7] PKIFreeText OPTIONAL,
-- this may be used to indicate context-specific instructions
-- (this field is intended for human consumption)
generalInfo [8] SEQUENCE SIZE (1..MAX) OF

InfoTypeAndValue OPTIONAL
-- this may be used to convey context-specific information
-- (this field not primarily intended for human consumption)

}

Table 4.2: PKIHeader from RFC 2510

implementation. As explained in section 5.2, this requirement means that the
implementation presented in this thesis does not conform to RFC 2510.

One issue with CMP that should be mentioned is that RFC 2510 and
2511 are inconsistent. This is not a major issue, due to the fact that the in-
consistencies are few and, with one notable exception, quite insignificant to
the protocol. One such insignificant inconsistency is that RFC 2510 uses the
term “Certification Request” for one of the messages, while RFC 2511 uses
“Certificate Request”. This thesis follows RFC 2510 whenever such inconsis-
tencies occur. The one notable exception is an inconsistency in an ASN.1
sequence, shown in table 4.3, where a tag is missing in the sequence from
RFC 2511. As mentioned earlier, this is not a major issue, as long as RFC
2510 is considered authoritative.

37

RFC 2510, section 3.2.8, page 28:

POPOSigningKeyInput ::= SEQUENCE {
authInfo CHOICE {

sender [0] GeneralName,
-- from PKIHeader (used only if an authenticated identity
-- has been established for the sender (e.g., a DN from a
-- previously-issued and currently-valid certificate))
publicKeyMAC [1] PKMACValue
-- used if no authenticated GeneralName currently exists for
-- the sender; publicKeyMAC contains a password-based MAC
-- (using the protectionAlg AlgId from PKIHeader) on the
-- DER-encoded value of publicKey

},
publicKey SubjectPublicKeyInfo -- from CertTemplate

}

RFC 2511, section 4.4, page 4:

POPOSigningKeyInput ::= SEQUENCE {
authInfo CHOICE {

sender [0] GeneralName,
-- used only if an authenticated identity has been
-- established for the sender (e.g., a DN from a
-- previously-issued and currently-valid certificate)
publicKeyMAC PKMACValue },
-- used if no authenticated GeneralName currently exists for
-- the sender; publicKeyMAC contains a password-based MAC
-- on the DER-encoded value of publicKey

publicKey SubjectPublicKeyInfo } -- from CertTemplate

Table 4.3: POPSigningKeyInput from RFC 2510 and RFC 2511

38

Chapter 5

Construction

Having reviewed existing solutions and gathered building blocks, the time
has come to construct the single sign-on system. The goal is to be able to
bootstrap a PKI using password-only authentication. The sections will go
through requirements specification, system design, security analysis, perfor-
mance analysis, implementation and performance testing. Please note that,
as specified in the assignment, the implementation is experimental, and not
ready for production use. That being said, much care has been taken to make
it as scalable as possible. Its main purpose is as a reference for implementors
of the design presented in this thesis.

5.1 Requirements

The first task of the system construction is to specify the system require-
ments. The original requirements from the assignment state that the system
must provide real-time issuing of digital certificates with short validity times.
In other words, the system uses the on-the-fly approach described in section
3.7, and short certificate lifetimes is used as the revocation mechanism, as
described in section 3.6. Furthermore, the interpretation in section 1.3 states
that the system must support password-only authentication, that the system
must provide an AS with CA functionality, and that the AS should be state-
less. Furthermore, the system will only handle authentication, authorization
is performed locally by each server or service. The system must provide both
AS and client software.

From the discussion in chapters 2, 3 and 4, it should be possible to for-
mulate a set of security requirements. The system must not be vulnerable
to server compromise, the server vulnerability will be moved to the AS. This
means that it is generally accepted that an AS compromise equals total sys-

39

tem compromise. If an attacker has compromised the AS, all users can be
impersonated by signing fraudulent digital certificates, and the only thing a
password can be used for is just that, obtaining a signed certificate. In other
words, there is no point in using an APKAS. If the AS is compromised, the
attacker does not gain anything more by having access to clear text equivalent
passwords. The result is that one might as well use a BPKAS, as mentioned
in section 4.1.

The system must not be vulnerable to passive or active network attacks.
More specifically, an active or passive attacker must not be able to learn
enough information to perform an off-line dictionary attack, impersonate a
user, or to perform a MITM attack, even if the attacker has full control of the
entire network. The system will not provide any specific protection against
network-based Denial-of-Service (DoS) attacks. As mentioned in section 2.4,
a system that relies on password-only authentication is not able to provide
protection against client compromise.

5.2 Design

Section 1.3 specifies that the goal of the system is to provide a PKI-based
single sign-on solution. The design will focus on messages 1 and 2 from figure
1.1, the communication between the client and the AS. Once this exchange
is completed, the client can use its digital certificate with existing public-key
based authentication schemes, referred to as message 3. Authorization is,
as mentioned previously, distributed, each server or set of servers have their
own authorization schemes.

In addition to SPEKE, one cryptographic algorithm for digital signatures
and one for symmetric encryption is required. Digital Signature Algorithm
(DSA)[41] will be used for the signatures, although Rivest Shamir Adleman
(RSA)[50] support will also be implemented to make performance compar-
isons. Advanced Encryption Standard (AES)[39] will be used as the sym-
metric algorithm. For SPEKE, the modulus p should be a safe prime, and
generation of safe primes takes a long time, so it is not practical to gener-
ate p at login time. Furthermore, using a different p for each client would
introduce security issues described in section 4.2. In particular, if the client
sends p to the server, then the server would have to check that it is indeed
a safe prime before continuing with the exchange. There is a simple solution
to these issues: Use the same modulus p for the entire system.

The protocol used for communication between the client and AS is CMP.
There are several reasons for using CMP. One is that this protocol was de-
signed to maintain a PKI, and that is basically what it will be used for,

40

although in a very limited fashion. There is no point in inventing a new
protocol when an existing one will do just fine. Another reason is that CMP
directly supports authentication based on hardware tokens, through the use
of digital signatures, so it is easy to extend the system to allow token-based
authentication in the future. Furthermore, there are already CMP imple-
mentations available, so there is no need to implement an entire protocol
from scratch. CMP uses X.509v3 certificates with the PKIX profile specified
in [14], so the obvious choice is to use that certificate profile.

One assumption made is that the CA root certificate is distributed out-of-
band to all participants. For an organization that directly controls all clients
and servers through configuration management systems, this is not an issue,
they can distribute the CA certificate through their existing infrastructure.
For other scenarios, like users logging in from their home PCs, this assump-
tion does not necessarily hold. Therefore, an alternative approach is also
discussed in this section.

Since a stateless AS is preferred, the most obvious scheme would be a
two-message exchange, similar to the one illustrated in figure 4.3, although
it must be modified to provide on-the-fly signing of digital certificates, using
CMP. The modified scheme is illustrated in figure 5.1. The modifications
when compared to the private key download in figure 4.3 are that the client
submits its public key to the AS, and that a signed and encrypted digital
certificate is returned instead of an encrypted private key. As previously,
KC,CA represents the shared secret key generated by SPEKE.

It should be noted that a reduction to two messages makes the system not
conform to RFC 2510, because all conforming implementations must support
“Basic authenticated scheme”, which consists of three messages. The last
message of “Basic authenticated scheme” is a Confirmation message from the
client to the CA.

The next design challenge is how to use the Certification Request and
Certification Response messages as containers for the SPEKE verifiers and
the other parameters needed for issuing the digital certificate. The easy part
is to determine where to store the identity and public key of the user. Table
5.1 shows the ASN.1 sequences for CertRequest and CertTemplate. The
identity is stored as subject, while the public key is stored as publicKey.

For the Certification Request message, the most convenient way to allow
the client to request an encrypted certificate is by using the PoP mecha-
nism. CMP offers this to support requests for encryption certificates, but it
will be used for signature certificates instead. The relevant ASN.1 sequences
from RFC 2511 are listen in table 5.2. Thus, ProofOfPossession is set to
keyEncipherment, POPOPrivKey is set to subsequentMessage, and Subse-
quentMessage is set to encrCert.

41

AS/CA

Client

1 2

1: C −→ AS: C, PKC , gRC mod p
2: AS −→ C: gRCA mod p, {CERT (C, PKC , SIGCA)}KC,CA

Figure 5.1: Issuing of digital certificate

CertRequest ::= SEQUENCE {
certReqId INTEGER, -- ID for matching request and reply
certTemplate CertTemplate, -- Selected fields of cert to be issued
controls Controls OPTIONAL } -- Attributes affecting issuance

CertTemplate ::= SEQUENCE {
version [0] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,
signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeyInfo OPTIONAL,
issuerUID [7] UniqueIdentifier OPTIONAL,
subjectUID [8] UniqueIdentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }

Table 5.1: CertRequest and CertTemplate from RFC 2511

The message protection in CMP is not used for password-only authenti-
cation. However, if one wishes to use public-key based authentication using
hardware tokens, using a digital signature as message protection instead of
using PoP makes sense, since the use of message protection provides both
message integrity and sender authentication, while PoP provides only the
latter. One might wonder why the system should be used at all if hardware

42

ProofOfPossession ::= CHOICE {
raVerified [0] NULL,
-- used if the RA has already verified that the requester is in
-- possession of the private key
signature [1] POPOSigningKey,
keyEncipherment [2] POPOPrivKey,
keyAgreement [3] POPOPrivKey }

POPOPrivKey ::= CHOICE {
thisMessage [0] BIT STRING,
-- posession is proven in this message (which contains the private
-- key itself (encrypted for the CA))
subsequentMessage [1] SubsequentMessage,
-- possession will be proven in a subsequent message
dhMAC [2] BIT STRING }

SubsequentMessage ::= INTEGER {
encrCert (0),
-- requests that resulting certificate be encrypted for the
-- end entity (following which, POP will be proven in a
-- confirmation message)
challengeResp (1) }

Table 5.2: ProofOfPossession, POPOPrivKey and SubsequentMessage

tokens are already deployed. In general, there are two advantages: The first
one is that it allows users to use either password-only or token-based authen-
tication depending on the circumstances, so both authentication mechanisms
can coexist. Adding a trust level field to the issued certificate could specify
whether the user used password-only authentication or not, so that it would
be possible for servers to specify the trust level needed to access its services.
The second advantage is that the system provides the certificate revocation
mechanism. If a user’s long term private key, stored in the hardware token,
is compromised, all that has to be done is to disable the user in the AS. The
AS will thus refuse to issue any more certificates for that user, so the com-
promised private key will be worthless. In other words, only the AS needs to
know whether a user’s long-term key is valid or not.

One of the major issues is where to put the SPEKE public keys gRC and
gRCA . After careful consideration, the senderKID field of the PKIHeader from
RFC 2510 was used for gRC and gRCA . This optional field should originally
be used to identify which key that was used for message protection, not to
store the actual key, but it will instead be used to store the SPEKE public
keys used for PoP. Other possibilities were considered, but due to the fact

43

that both the AS and client need to send their SPEKE public key, and that
they send different message types with different PKIBody, means that the
keys had to be put in the PKIHeader, which all types of PKIMessage contain.
The only other realistic alternative was the generalInfo field, but using that
one was a more complex option. In the end, simplicity won.

Another design issue is where to put the Initialization Vector (IV) needed
for decryption of the certificate when using a cipher in Cipher Block Chaining
(CBC) mode. Examining the ASN.1 sequence EncryptedValue in table 5.3,
which is used to store an encrypted certificate, one can observe that the
encSymmKey contains raw binary data, which is suitable for storing the IV.
So, the IV is stored in the encSymmKey field, even though RFC 2511 states
that its original purpose is to be a container for the symmetric key needed
to decrypt the encValue.

EncryptedValue ::= SEQUENCE {
intendedAlg [0] AlgorithmIdentifier OPTIONAL,
-- the intended algorithm for which the value will be used
symmAlg [1] AlgorithmIdentifier OPTIONAL,
-- the symmetric algorithm used to encrypt the value
encSymmKey [2] BIT STRING OPTIONAL,
-- the (encrypted) symmetric key used to encrypt the value
keyAlg [3] AlgorithmIdentifier OPTIONAL,
-- algorithm used to encrypt the symmetric key
valueHint [4] OCTET STRING OPTIONAL,
-- a brief description or identifier of the encValue content
-- (may be meaningful only to the sending entity, and used only
-- if EncryptedValue might be re-examined by the sending entity
-- in the future)
encValue BIT STRING }

Table 5.3: EncryptedValue from RFC 2511

Having designed the mechanism for issuing certificates, how does one solve
the CA root certificate distribution problem? Actually, there is a simple way
to solve this: If the client does not already have the CA root certificate, it
can request it from the AS. The AS then encrypts the root certificate using
the SPEKE shared secret key and includes this in the response. Only the AS
is able to encrypt a message with the shared secret key, so this provides mes-
sage authentication. This slightly modified scheme is illustrated in figure 5.2.
The modification reduces the total system security slightly, and it increases
the load on the AS by making it perform one extra symmetric encryption per
request, but the advantage is that it removes the assumption that the CA
root certificate must be distributed out-of-band. The performance penalty

44

should be minimal, due to the relatively low computational cost of symmet-
ric operations compared to the asymmetric operations used for SPEKE and
digital signatures.

AS/CA

Client

1 2

1: C −→ AS: C, PKC , gRC mod p
2: AS −→ C: gRCA mod p, {CERT (C, PKC , SIGCA)}KC,CA,

{CERT (CA, PKCA, SIGCA)}KC,CA

Figure 5.2: Issuing of digital certificate and CA root certificate

At first sight, it may look like this modification could be trivially im-
plemented in CMP by including the encrypted CA root certificate as the
caPubs part of the CertRepMessage from RFC 2510, shown in table 5.4.
However, this is not possible, because the caPubs field, of type Certificate,
only supports clear text certificates. The solution is to add another CertRe-
sponse containing the encrypted CA root certificate to the CertRepMessage.
In other words, the CertRepMessage consists of two CertResponses, the first
one is the encrypted client certificate and the second the encrypted CA root
certificate. In fact, the client does not even need to specifically request this,
the encrypted CA certificate could always be included in the response from
the AS. That way, if the client does not have the CA root certificate, it can
use the encrypted one, otherwise it can just ignore that part of the response.

The whole discussion so far has focused on the initial issuing of a digital
certificate using password-only authentication or hardware tokens. This cer-
tificate has a short validity period, a typical value could be one hour, due to
the fact that short certificate lifetimes is used as the revocation mechanism.
This means that there must be a way to renew certificates after the initial
exchange. One alternative is to have the user enter the password each time a

45

CertRepMessage ::= SEQUENCE {
caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,
response SEQUENCE OF CertResponse

}

CertResponse ::= SEQUENCE {
certReqId INTEGER,
-- to match this response with corresponding request (a value
-- of -1 is to be used if certReqId is not specified in the
-- corresponding request)
status PKIStatusInfo,
certifiedKeyPair CertifiedKeyPair OPTIONAL,
rspInfo OCTET STRING OPTIONAL
-- analogous to the id-regInfo-asciiPairs OCTET STRING defined
-- for regInfo in CertReqMsg [CRMF]

}

CertifiedKeyPair ::= SEQUENCE {
certOrEncCert CertOrEncCert,
privateKey [0] EncryptedValue OPTIONAL,
publicationInfo [1] PKIPublicationInfo OPTIONAL

}

CertOrEncCert ::= CHOICE {
certificate [0] Certificate,
encryptedCert [1] EncryptedValue

}

Table 5.4: CertRepMessage with contents from RFC 2511

certificate is to be renewed, which would destroy the single sign-on property
of the system. Another possible solution is to set a validity period of eight
hours or more, to make the probability of a certificate renewal request during
a single session low. This last technique is used by Kerberos. Nevertheless,
the system should provide a way to renew certificates to be able to provide
true single sign-on. This is actually rather straightforward, because after the
initial exchange, the user has a valid certificate. When it is time to renew
the certificate, the user generates a new key pair, then uses the old private
key to make a digital signature as message protection in the Certification
Request message. The AS can verify the signature through the old, but still
valid, certificate, and issue a new certificate based on this. The old certificate
should be included in the extraCerts field of the PKIMessage, as specified in
RFC 2510. The motivation for using message protection instead of PoP is,
as previously mentioned, that it provides both message integrity and sender

46

authentication, at no extra cost.

5.3 Security analysis

As stated in section 1.4, the security analysis focuses on the authentication
scheme of the proposed solution. The fully constrained SPEKE from section
4.2 is used, to thwart all known attacks against SPEKE. The initial authen-
tication to the AS is very similar to the two-message private key download
using SPEKE from [29] illustrated in figure 4.3. Using a two-message scheme
is a trade-off: It makes the AS stateless, but the cost is that mutual authenti-
cation is no longer possible. The AS does not know if the client is legitimate
or not, it signs and encrypts a certificate without any client authentication.
However, a client that does not know the password will not be able to de-
crypt the certificate or perform an off-line password-guessing attack, due to
SPEKE being randomized. What this means is that an active attacker is able
to do unaudited on-line password guessing. But, as Perlman and Kaufman
point out in [29]:

Although Bob cannot distinguish a legitimate download from a
password guess, he ought to get suspicious if the same user re-
quests thousands of password downloads within a short time.

The countermeasure for this vulnerability is to log authentication at-
tempts per user, and implement throttling or a maximum number of requests
per time period. Care should be taken not to introduce DoS vulnerabilities
by doing so. As an example, if the AS only allows three initial authentica-
tions per user per day, then an attacker could remove a user’s ability to use
the system by simply performing the initial authentication three times using
a fake password. A truly malicious attacker could disable the whole system
for a day by doing the aforementioned attack once per user.

Two different options for CA root certificate distribution have already
been discussed: Out-of-band distribution and the inclusion of an encrypted
CA certificate in the initial response. By choosing the latter option, one
sacrifices a little security to be able to use the system from clients that are
not able to establish initial trust out-of-band. The security degradation is
subtle: If an attacker is able to get the verifier H(P), or the password P , it
is possible to send the client a fake CA certificate by intercepting message 1
from figure 5.2 and sending the fake CA certificate as part of the response.
By having the client accept this certificate as authoritative, the attacker can
then proceed to redirect all traffic from the client to a server controlled by
the attacker, with a server certificate signed by the fake CA private key. The

47

effect is that the attacker is able to trick the client into believing that a
malicious server is legitimate. As an example, this could be used to collect
personal information about the user to perform identity theft. In other words,
if the CA certificate is not distributed out-of band, then an attacker can
impersonate a legitimate server1 to the user, but only if the attacker already
has the user’s password. In some special cases, this distinction could be
important. The security recommendation is then, not very surprisingly, to
distribute the CA certificate to clients out-of-band where possible, otherwise
use the encrypted certificate from the response.

There is, however, a potentially serious vulnerability with the proposed
authentication scheme. The origin of the vulnerability is that the messages
in the initial authentication do not have message integrity protection. The
consequence of this is that an active attacker can modify the messages with-
out detection. To exploit this vulnerability, an attacker could generate a key
pair PKA, SKA, then proceed as shown in figure 5.3, by modifying the first
message from the client to the AS. The effect is that the client receives an en-
crypted certificate with the legitimate user’s identity, but with the attacker’s
public key. The client then decrypts the certificate. Assume that the client
does not check that the data in the certificate is valid, particularly that the
public key is the same as the one sent by the client in message 1, and then
tries to establish a session to a server using TLS authentication. During the
TLS handshake, the client is requested to send its certificate. When it does,
the attacker, who is busy capturing traffic, also gets the certificate. The
attacker now has a valid certificate with the user’s identity and the corre-
sponding private key, and is able to impersonate the user. This attack would
be detectable by the user, because the TLS authentication would fail, but it
might already be too late by then.

To protect against the active attack illustrated in figure 5.3, the client
must check the contents of the certificate received from the AS. Failure to
check that the public key is identical to the one sent by the client gives an
attacker the opportunity to impersonate the user.

The lack of message integrity protection raises another interesting point.
As shown in figure 5.3, an attacker can replace the user’s public key, and
the AS will still sign the certificate. The consequence is that the AS is not
actually acting as a CA when password-only authentication is used, because
a CA is per definition supposed to verify that the public key in the cer-
tificate really does belong to the corresponding user identity before signing.
In password-only mode, the AS should therefore be described as a signing

1Or another system user

48

AS/CA

Client Server4

Attacker

1
3

2

1: C −→ AS: C, PKC , gRC mod p
2: C −→ AS: C, PKA, gRC mod p
3: AS −→ C: gRCA mod p, {CERT (C, PKA, SIGCA)}KC,CA

4: C −→ S: CERT (C, PKA, SIGCA)

Figure 5.3: Active attack on authentication

server, or simply AS, rather than as a CA.2 However, this is not an issue when
using hardware tokens, due to the client’s digital signature used for message
protection, which binds the public key to the user’s identity. One recommen-
dation would thus be to add a field to the certificate that specifies the trust
level, e.g. password-only or hardware token based. To avoid escalation of
trust level, certificate renewal should only be possible when the old and new
certificates have the same trust level. Furthermore, if the AS should be able
to act as a CA in password-only mode, more than two messages is needed,
which would violate the requirement that the AS should be stateless. Using
a protocol with four messages would make it possible for the AS to verify the
identity of the client and bind it to the public key in the certificate. One way
to achieve this is by first performing SPEKE (messages 1 and 2), and then
using the shared secret key in a keyed HMAC that provides message integrity
for the signing request and response (messages 3 and 4). Using a protocol
with more than two messages for the initial password-only authentication is
not further elaborated in this thesis.

There are three different parameters for asymmetric cryptography used
in the system presented. Those are the SPEKE modulus, the client DSA or

2The server is therefore referred to as the AS/CA, because it assumes one or both roles,
depending on the circumstances

49

RSA modulus, and the CA DSA or RSA modulus. If the modulus is so short
that an attacker is able to find discrete logarithms, or in the case of RSA,
factor the modulus, the security of the system is compromised. The severity
of the compromise varies based on which of the three moduli the attack is
directed towards.

A successful attack on the client modulus would enable the attacker to
impersonate that particular client, but only for as long as the attacker is able
to renew the session. The attack gives the attacker access to the short-term
private key generated on-the-fly. In other words, a live session is required
for successful exploitation, and the attacker must be able to find the discrete
logarithm in a shorter amount of time than the certificate life time.

The SPEKE modulus takes a very long time to generate, which makes it
impractical to generate it in real time. This is because finding safe primes is
very time consuming. Therefore, in the proposed system, the SPEKE mod-
ulus p is pre-shared among all participants. A successful attack on this mod-
ulus results in the attacker being able to find the exponents of the SPEKE,
which then enables compromise of the verifier H(P). This verifier can then
be used to obtain a valid certificate from the AS.

Successfully attacking the CA modulus results in a total system compro-
mise: The attacker then has the CA private key, and is able to sign valid
certificates without any further interaction with the AS.

From a system-wide perspective, the CA modulus is the most critical,
and should be at least as long as any of the others. The SPEKE modulus
comes in second place, successful attacks against that one gives the attacker
access to the shared secret verifier between a user and the AS. The least
critical modulus is the client modulus, successful exploitation leads to session
capture, but does not give the attacker enough information to successfully
authenticate to the AS in the future, unless the attacker uses a captured
session to change the user’s password. The moral of the story is that in a
production system, the CA modulus should not be shorter than any of the
other two, and the SPEKE modulus should not be shorter than the client
modulus. Or, to make it simple, just make sure that all three moduli are
long enough to make such attacks impractical. 1024 bits would probably do
just fine. In an experimental system, however, it may be interesting to test
different combinations to see how the key lengths affect performance. More
on that in section 5.6.

A few more words on key lengths: On page 166 of [31], a comparison
between symmetric and asymmetric key lengths is presented. Since the choice
of symmetric algorithm is AES, using the minimum key length of 128 bits,
the symmetric key will always be the strongest part of the system as long as
the moduli for SPEKE, DSA and RSA are less than 2304 bits in length. For

50

the performance tests, modulus lengths of 768, 1024 and 2048 bits will be
used for asymmetric cryptography. The reasoning behind this is that a 768
bit modulus is the minimum recommended length for short-term security as
per today, 1024 bits is considered good enough for many applications, and
2048 bits is considered generally safe. To speed up the SPEKE calculations,
shorter exponents are used, as suggested in [28], which recommends that the
length of the random exponents, RC and RCA in SPEKE, should be at least
twice the length of the symmetric key produced by the exchange. This means
a length of 128∗2 = 256 bits, since AES with a key length of 128 bits is used.
However, [18] recommends using an exponent of length 336 bits, which is well
above the minimum recommended value, but still short enough to provide a
significant performance benefit, and this recommendation will be followed.

5.4 Performance analysis

This section provides a theoretical background for the performance tests de-
scribed in section 5.6. The focus is on the AS, although one aspect of client
performance, key generation times, will also be discussed. From the system
design in section 5.2, one can observe that the AS has two main modes of
operation: Initial issuing of certificates using SPEKE, and renewal of cer-
tificates using digital signatures for client authentication. Both modes of
operation must be tested for performance. In both cases, the dependent
(measured) variable is the number of issued client certificates per second,
but the independent (manipulated) variables for the two modes of operation
are different. The independent variables for each mode of operation are the
parameters that have a significant impact on the performance of the system.
An in-depth background on performance in cryptographic algorithms will not
be presented here, for a more detailed description and analysis see [27]. The
general assumption used is that modular exponentiation using a huge mod-
ulus is so computationally expensive that it eclipses the performance impact
of other parameters. The main focus will therefore be on the most computa-
tionally expensive operations, the asymmetric ones. It is assumed that the
symmetric operations and hashing have such a small impact that they can
be ignored.

When using SPEKE, the client and server each have to perform two mod-
ular exponentiations, as explained in section 4.2. The first exponentiation
produces the SPEKE public key, while the second produces the shared se-
cret key. For DSA signing, the server or client has to perform one modular
exponentiation. For DSA signature verification, they have to perform two
modular exponentiations, although they can be performed simultaneously,

51

which results in the performance impact being approximately 1.17 modu-
lar exponentiations, see pages 453-454 of [27] for details. For RSA signing
and signature verifications, one modular exponentiation is performed. How-
ever, a small number is often chosen as the encryption exponent e in RSA,
which results in signature verification being a lot faster than signing. As a
consequence, e = 216 + 1 = 65537 is used as the encryption exponent, as
recommended on page 291 of [27]. A summary of the performance impacts
of the different operations is shown in table 5.5. For the initial authenti-

Mode Number of modular exponentiations
SPEKE 2

DSA signature 1
DSA verification 1.17
RSA signature �1

RSA verification �1

Table 5.5: Theoretical performance comparison

cation using SPEKE, there are three independent variables: The SPEKE
modulus, the CA modulus, and the CA signature algorithm. The only effect
of changing the client modulus in the initial authentication is to make the
PKIMessage a little longer, so this has a minimal impact on performance.
This is why the client modulus and signature algorithm are not included as
independent variables. For the initial issuing of a certificate, the AS has to
perform two modular exponentiations using the SPEKE modulus, and one
digital signature using the CA algorithm and modulus.

For renewal of certificates, there are four independent variables: The
CA modulus, CA signature algorithm, client modulus and client signature
algorithm. SPEKE is not used for renewal of certificates. In this mode of
operation, the AS has to check the client’s signature on the new certificate,
then check the CA signature on the old certificate, and finally sign the new
certificate.

The performance impact of the independent variables for the two different
modes of operation are summarized in table 5.6.

Before performing actual tests, it might be enlightening to make a few
conjectures about the performance of the various combinations of algorithms
presented. First of all, one might assume that the initial issuing of certificates
will be faster when using DSA than when using RSA. The argument support-
ing this is simply that signing using RSA is more time-consuming than when
using DSA. When considering renewal of certificates, the situation is a little

52

Entity Operation SPEKE CA sign CA verify Client sign Client verify
AS Initial 1 1 0 0 0

Client Initial 1 0 1 0 0
AS Renew 0 1 1 0 1

Client Renew 0 0 1 1 0

Table 5.6: Number of performance critical operations

more complex. One thing that is known is that the AS has to perform two
verifications and one signature. Based on the information in table 5.6, the
fastest combination of algorithms for renewal would probably be RSA on the
client and DSA on the AS. That would result in the AS performing one RSA
verification, which is extremely fast, and then one DSA verification and sig-
nature. This is at least faster than using DSA on both the client and the AS,
and in the last two cases the AS has to sign using RSA, which will probably
result in lower performance.

One performance issue that has not yet been discussed is the time used
for key generation on the client. For the initial authentication procedure, key
generation times of more than a few seconds is probably unacceptable. Users
do not wish to have to wait for a long time after entering their password before
they are allowed to access the system. Based on conventional knowledge,
DSA parameter generation is quite slow. Because of this, the parameters
p, q and g used for DSA are often generated when the software is installed,
rather than at login time. The key generation itself, when the parameters
are available, is very fast when using DSA. With RSA, on the other hand, it
is not possible to pre-compute key generation parameters, so key generation
will be slower. Two questions that need to be answered through experiments
is therefore: Is generation of RSA keys at login time a viable approach? And
is the generation of DSA parameters fast enough to be used on-the-fly?

5.5 Implementation

To implement the system design, several technology choices had to be made.
First of all, Java[42] was selected as the programming language, partly be-
cause of the level of proficiency of the implementor, and partly because of the
availability of libraries, particularly a freely available CMP implementation.
The version of Java used is J2SE 1.5.0 02, and the CMP implementation
used is the NOVOSEC extensions[47] to the Bouncy Castle Crypto APIs[40].
Release 101 of the NOVOSEC extensions and version 1.27 of the Bouncy

53

Castle Crypto APIs are used. The selected transport mechanism for CMP
is HTTP (Content-Type: application/pkixcmp), which makes it extremely
easy to scale horizontally by using existing solutions for load balancing of web
servers. The AS is implemented as a Java Servlet, and Jakarta Tomcat[55]
version 5.5.9 is used as the Servlet container. A short description of the
Tomcat configuration is presented in appendix A.

The first iteration of the implementation - test cycle was to provide a func-
tional implementation using DSA as the signature algorithm. Furthermore,
to generate CA certificates and server certificates for functionality testing, the
Java classes in appendices E and F were used, for DSA and RSA certificates
respectively. The difference between CA certificates and server certificates
is that the CA certificates are self-signed, as illustrated in the Java class in
appendix F. The reason for generating server certificates is that, even if the
ordinary servers are defined as out-of-scope for this thesis, server certificates
are a prerequisite for functionality testing using third party software.

The Java class in appendix G was used to generate the moduli used
for SPEKE. This rather naive method of finding a safe prime is very time-
consuming, but it got the job done. Generation of the 2048-bit modulus took
over three hours on a server with two Intel Xeon 2.8 GHz CPUs.

The client and server were run on the same physical system, and the server
implementation was basically just a doGet() method in a Java Servlet, while
the client was run from the command line. All values were hard-coded, so
recompilation was needed for configuration changes. Although the system as
such was crude, it did provide the desired functionality. The user entered
the user name and password into the client software, the client then initiated
SPEKE and got its signed certificate from the server. Keys and certificates
were stored as ordinary system files.

Quality assurance of the functionality was performed in several stages:
First, the output of debug routines in the software was inspected, as shown
in appendix B. Next, the resulting certificates and messages were inspected
using the ’openssl asn1parse’ command, see appendix C for an example.
Finally, the client private key and signed certificate were used to set up SSL
connections to an OpenVPN[48] server. This last experiment was performed
to assure that the certificates and keys produced by the system could be used
with third-party software, and example results are presented in appendix D.

Having completed a functional system, the time had come to stress test
it. An ordinary workstation with an AMD Athlon XP 1800 CPU was set up
as the server, and another workstation, with a VIA Eden 500 MHz CPU, was
configured to just read a PKIMessage from disk and then spawn 10 threads
that fired requests at the server as quickly as possible. The result was that
the Java runtime environment on the server ran out of heap memory, the

54

garbage collector was simply not able to remove dereferenced objects quickly
enough. The end result was that the server was unable to respond to any
more queries.

The next iteration of the development focused on the scalability of the
server. Initial instantiation of shared objects in the Servlet were moved from
the doGet() method to the init() method. After these adjustments, the server
performed better under heavy loads, at least it did not run out of memory. To
test the performance of the system using realistic server hardware, two Dell
PowerEdge 2650 machines were used, one as server and the other as client.
The server and client operating system was SUSE Linux Enterprise Server
9. This setup was used for all the subsequent performance tests. Hardware
specifications for the Dell servers are listed in appendix P.

During the tests, several errors occurred. This was traced back to certain
objects, particularly Cipher and SHA1Digest, being instantiated in the init()
method, which means that they were shared among several Servlet instances.
The problem was the way that the objects were used, each Servlet had to
make several method calls in sequence to the object. This is illustrated by
the example code from the server in table 5.7. As an example, if one Servlet
calls the Cipher.init() method just before another Servlet calls the doFinal()
method, the second Servlet will experience a“java.lang.IllegalStateException:
Cipher not initialized”, because the state of the myCipher object is different
from what the second Servlet expected.

In the init() method:

Cipher myCipher =
Cipher.getInstance("AES/CBC/PKCS7Padding" , bcProvider);

In the doGet() method:

myCipher.init(Cipher.ENCRYPT_MODE , myAESKeySpec , secureRandom);
byte[] myAESIV = myCipher.getIV();
byte[] encryptedValue = myCipher.doFinal(myX509Cert.getEncoded());

Table 5.7: State problems with the Cipher object

This problem might not be detected on a single-threaded system, but
it was definitely noticeable on an SMP system with hyper threading, where
several Servlets were executed simultaneously and interfered with each other.
The instantiation of the objects in question was moved to the doGet() method,
such that they were instantiated once per request, and this solved the prob-
lem. The lesson learned was that one must be very careful when deciding
which objects should be instantiated in the init() method, and which objects

55

should be instantiated once per request. If a Servlet does more than one
method call in sequence to an object while depending on the state of said
object, it must instantiate its own object for every request.

When the system performed well under heavy load, the next step was to
modularize it and to add support for the RSA signature algorithm. After
this had been successfully implemented, the time had come to stress test the
system thoroughly to gather performance statistics for different key lengths
and algorithms. Such statistics are useful for future consideration of hardware
needs for the AS. Before initiating stress tests with different configuration
parameters, the client and server were modified to read their configuration
parameters from file during run-time, to avoid having to recompile the whole
system for each round of testing. An example AS configuration file is listed
in appendix J, and the corresponding client configuration file in appendix
K. The finished AS implementation is included as appendix H, and the
client implementation as appendix I. An in-depth description of the testing
methodology and the results is presented in section 5.6.

5.6 Performance testing

With functionality covered, the focus can now be shifted to performance.
The test results and the following analysis presented in this section provide
the information needed to select proper hardware based on expected system
load. Additionally, a comparison between benefits and drawbacks of RSA
and DSA is presented. In the description of the performance tests, the term
“server” should be understood as the AS/CA of the proposed system, not as
one of the other servers in figure 1.1.

For the performance testing, the test setup was the same as described in
section 5.5, two Dell PowerEdge 2650 machines running SUSE Linux Enter-
prise Server 9. Details are listed in appendix P.

The performance tests used two components, the Java classes referenced
in appendix M and the shell script referenced in appendix L. What the shell
script does is to run the ordinary client once, with or without renewing the
certificate, and then write the PKIMessage that was sent to the server to
a file. Then, it starts forking Java processes, one per minute. The Java
processes read the PKIMessage from the file and repeatedly send it to the
server. The output is logged to a file. If the maximum number of parallel
processes is reached, the script instead initiates a single request to check the
response time of the server. The motivation for implementing it this way
was to be able to observe the increasing load on the server as new stress
test processes were started, and to make sure that new threads were started

56

regularly, as opposed to all of them starting, and possibly finishing, at once.
An alternative approach might have been to just start everything at once,
and to make the Java processes continue indefinitely instead of exiting after
a specific number of requests.

One potential source of errors in this test setup is that if the same calcu-
lation is performed many times on the server, the parameters may be cached,
resulting in a faster response than in a real-world scenario with several thou-
sand clients sending different messages. To avoid this, care was taken to
modify the messages for each request, so that the calculations would be dif-
ferent. For the initial authentication, the stresstest.java class generates a
new SPEKE public key gRC every time, and the AS generates a new RCA

so that the server has to compute a new session key for every request. Ad-
ditionally, the server increments the serial number of the issued certificate
for each request, so that the hash of the client certificate is modified. Thus,
the server signs a different value for each request. For the renewal tests, the
client generates a new nonce for the PKIHeader for each request, then signs
the message. The result is that the AS has to check a different signature for
each request.3 The only computationally intensive operation that could be
cached in these tests is the verification of the CA signature on the client’s
old certificate.

By using the ’top’ command on the server, one could observe that each
client process was only able to use between 22 and 24% of the available CPU
resources. This is probably due to the fact that the server has two CPUs,
with each CPU being able to run two threads in parallel. With 5 processes,
the CPU load went above 90%, and with 10 processes the client was very
close to maximizing the CPU load on the server. The limit used for the
number of parallel processes in the tests is therefore 10, to maximize server
load.

Six different test cases were defined, these are listed in table 5.8. The cases
listing SPEKE as the client algorithm are initial issuing of a certificate, while
the others are renewal. For each of the cases, one test run was performed
for each possible combination of the moduli 768, 1024 and 2048, for a total
of nine test runs per test case. Each test run was allowed to execute for one
hour after the test had reached the maximum number of parallel processes.
A typical execution was to start the test run at e.g. 11:30. When the time
approached 12:00, the load on the server was checked, to verify that it was
close to maximum CPU usage. The test was left to run until 13:00, then

3In some of the test runs, where the client had to sign using RSA with a large modulus,
the client was simply not able to generate enough load to stress test the server properly.
In those test runs, marked with a dagger (†) in the test results, the client did not modify
the message.

57

performance statistics were collected for the period 12:00-13:00.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Client algorithm SPEKE SPEKE DSA RSA RSA DSA
CA algorithm DSA RSA DSA RSA DSA RSA

Table 5.8: Test cases

As soon as a test run was completed, the log on the client was checked
for errors. The Java classes record the number of invalid responses from the
server while they run, and when they exit a summary is written to the log file.
If no errors had occurred, then the performance statistics were extracted from
the access log on the server. The client’s log file was thus used to verify that
the server had returned only valid responses, while the access log on the server
was used to measure the number of issued certificates. In the aforementioned
example, assuming that the test was run on May 12, and that the client IP
address was 129.241.11.162, the log lines of issued certificates were extracted
with the following command from the Tomcat installation directory:

grep ’12/May/2005:12’ logs/localhost_access_log.2005-05-12.txt | \
grep ^129.241.11.162 > stresstest_renew_client1024rsa_ca1024dsa.txt

Further processing of the log file was then performed:

awk ’{print $4}’< stresstest_renew_client1024rsa_ca1024dsa.txt | \
sort | uniq -c | awk ’{print $1}’ \
> stresstest_renew_client1024rsa_ca1024dsa_results.txt

What this command does is, for each second in the original log file, write a
line that contains the number of requests answered during that second. The
resulting file, with the number of issued certificates per second, should thus
have 3600 lines. Unfortunately, Tomcat seems to buffer logging when the
server is under heavy load. The result is that some seconds are missing, in
the tests performed this number was somewhere between 25 and 180 lines,
depending on the key lengths used. To correct this, new lines of 0 issued
certificates were added to the file until the total number of lines reached 3600.
The net result is that the average is correct, but the standard deviation is
probably higher than it should have been. Finally, the file was loaded into a
spreadsheet to perform statistical analysis.

After computing averages and standard deviation, the results were aggre-
gated. Table 5.9 shows the number of issued certificates for the initial au-
thentication for different modulus lengths and algorithms. Table 5.10 shows
corresponding results for certificate renewal. The syntax of the table entries
is average± stdev.

58

SPEKE modulus CA modulus DSA RSA
2048 2048 20.0± 4.9 14.5± 4.1
2048 1024 23.4± 5.1 22.6± 5.1
2048 768 24.2± 5.4 24.0± 5.3
1024 2048 43.6± 6.7 24.3± 5.3
768 2048 53.5± 7.2 26.9± 5.5
1024 1024 65.3± 8.0 62.2± 7.5
1024 768 71.4± 8.3 72.1± 8.2
768 1024 89.8± 9.3 82.6± 8.7
768 768 101.5± 10.0 102.8± 9.9

Table 5.9: Initial authentication, issued certificates per second

A few interesting conclusions can be drawn by observing the results for
initial issuing of certificates in table 5.9. Looking back to section 5.4, it was
conjectured that the number of issued certificates per second would be high-
est if the CA used DSA as the signature algorithm. The experiment partly
confirms this, but it has a significant impact only when the CA modulus is
larger than the SPEKE modulus or if both moduli are 2048 bits long. The
most obvious explanation for this is that the SPEKE computations are so
computationally expensive that when the SPEKE modulus is the same or
larger than the DSA or RSA modulus, the time used to sign the certificates
becomes insignificant in comparison. One other interesting observation is
that, for 2048 bit moduli, RSA seems to have approximately the same per-
formance impact as SPEKE. This can be seen in the results on lines two to
five. When either the SPEKE modulus or the RSA modulus is 2048, there
is hardly any difference at all in the performance whether the other one is
1024 or 768 bits long. This could mean that RSA signing scales poorly to
large moduli, the performance deteriorates faster than it does for SPEKE
and DSA when the modulus length is increased. The results for modulus
lengths 768/768, 1024/1024 and 2048/2048 also support this. The relative
performance difference between RSA and DSA increases together with the
modulus length. At 768/768 there is hardly any performance difference be-
tween using RSA or DSA (1%), at 1024/1024 the difference is noticeable
(5%), and at 2048/2048 there is a significant difference (38%).

From the test results for certificate renewal in table 5.10, one can finally
arrive at a conclusion with regards to the relative speeds of DSA versus
RSA. One question not answered by the analysis in section 5.4 was: Exactly
how much slower is RSA at signing, and how much faster is it at verifying

59

Client CA DSA/DSA RSA/RSA RSA/DSA DSA/RSA
2048 2048 20.9± 5.0 31.0± 6.0† 34.0± 6.0† 19.8± 4.8
2048 1024 35.5± 6.1 151.5± 12.4† 105.1± 9.7† 39.7± 6.5
2048 768 39.4± 6.5 237.8± 16.9† 153.9± 12.1† 43.7± 6.8
1024 2048 29.6± 5.8 31.4± 5.9 35.1± 6.0 27.4± 5.6
1024 1024 70.9± 8.1 170.8± 13.1† 108.9± 11.0 88.3± 9.2
1024 768 90.4± 9.3 290.5± 17.9† 173.0± 13.0† 115.5± 10.7
768 2048 31.6± 5.9 31.9± 5.9 34.6± 6.2 28.9± 5.7
768 1024 83.0± 8.7 170.9± 14.7 114.0± 10.2 111.9± 10.3
768 768 112.4± 10.1 301.3± 18.5† 174.1± 14.5 151.9± 12.6

(RSA/DSA = Client signs using RSA, CA signs using DSA)
† = This test run did not generate a new signature for each request. The

result is that these numbers might be somewhat higher than the
performance in a real-world scenario because of caching on the server.

Table 5.10: Renewed certificates per second

when compared to DSA? The answer cannot be determined directly from
the results, but recalling that for each renewal, the server has to sign once
and verify once using its own signature algorithm, one can tell whether a
signature and verification together using RSA are faster than when using
DSA. To find the answer, first look at RSA/RSA versus RSA/DSA. Here,
the client algorithm is the same, so the only performance difference should be
the change of server algorithm. The results show that as long as the server
modulus is less than 2048 bits long, RSA is a lot faster than DSA. In other
words, it is faster to do one signature and one verification using RSA than
when using DSA. For a 2048 bit server modulus, however, there is close to
no difference between the performance of the two algorithms. Once again,
the assumption that RSA signing scales poorly to large moduli is confirmed.
Looking at DSA/DSA versus DSA/RSA, the results once again show that
RSA is faster, except for a modulus length of 2048 bits.

The effect of the choice of client algorithm is obvious: The server has a
higher performance when the client uses RSA. This is not a surprise, looking
back to table 5.6, one can observe that the server performs one verification
using the client algorithm and modulus. Since RSA is faster at verification,
using that algorithm for client signatures increases server performance.

Another observation from the results is that a client using DSA with a
2048 bit modulus has a huge negative performance impact on the server.
The results for 2048/768 and 2048/1024 illustrate this clearly, the difference

60

between 2048-bit RSA and 2048-bit DSA on the client is striking. This might
be an indication that DSA signature verification has the same problem as
RSA signing with regards to scaling to large moduli.

The most severe errors from the conjectures in section 5.4 were that the
time used for RSA signing was over-estimated, and the impact of DSA signa-
ture verification was under-estimated. This resulted in the assumption that
DSA on the server with RSA on the client would be the fastest system. The
test results clearly show that this is not the case. The highest performance
is obtained by using RSA on both the client and server, as long as the server
modulus is less than 2048 bits long.

With the review of server performance completed, it is time to take a
closer look at the client. As mentioned in section 5.4, key generation times
on the client should be tested. To simulate a medium to low end client PC,
a Dell Latitude X200 laptop with an Intel Pentium 3 M 800 MHz CPU was
used for key generation. The Java class in appendix N was used to test
key generation times. The test was run 15 times for each modulus length,
with 100 iterations for each run, for a total of 1500 key generations for each
combination of algorithm and modulus. The whole test took approximately
nine hours.

Modulus DSA avg DSA max RSA avg RSA max
768 13± 2 32 907± 418 3962
1024 22± 2 35 1819± 923 6518
2048 80± 3 128 16915± 10213 69238

Table 5.11: Key generation times in milliseconds

Looking at the results in table 5.11, one can see that the assumption
made in section 5.4 was correct: Generating RSA keys takes significantly
longer than generating DSA keys. The key generation times for DSA are so
short, irrespective of the modulus length, that they have close to no impact on
the system performance. With a modulus length of 2048, the worst case was
just above 1/8 of a second. For RSA, however, key generation times is a real
issue. The time needed to generate a key with 1024 bit modulus is borderline,
the worst case of more than six seconds is a long time for a user to wait for
the login. With a modulus length of 2048 bits, the performance of RSA is
simply not acceptable, with an average of nearly 17 seconds and a worst case
of over a minute. The conclusion is that for initial login, DSA seems to be the
best choice for the client. Using RSA incurs an extreme performance penalty
for key generation. To answer the first of the two questions at the end of

61

section 5.4: Generating RSA keys at login time might be a viable approach,
but not when using a modulus length of more than 1024 bits.

The reason why DSA key generation is so much faster than RSA is, as
mentioned in section 5.4, that the key generation parameters p, q and g are
not generated on-the-fly, but loaded from a file. This kind of pre-computation
is not possible with RSA. However, it would also be interesting to see how
long generation of these DSA parameters takes on the client system described
above. To this end, the Java class in appendix O was used. The same Dell
X200 laptop was used, and 10 tests of 10 parameter generations per modulus
was performed, for a total of 100 key parameter generations for each modulus.
The entire test run took approximately 14 hours, and the results are presented
in table 5.12

Modulus average±stdev max
768 17019± 18213 95651
1024 53777± 51132 211277
2048 541369± 540657 2893329

Table 5.12: DSA parameter generation times in milliseconds

From the results listed in table 5.12, it is obvious that DSA parameter
generation on-the-fly at login time is not practical. The huge standard devi-
ation illustrates that the generation sometimes is very fast, while other times
extremely slow. The worst case, even for a modulus length of 768 bits, is
over one and a half minute, far more than an acceptable delay at login time.
The conclusion is that the DSA parameters should be generated when the
client application is installed, and stored on the client. The answer to the
last question in section 5.4 is thus: No, it is definitely not fast enough.

In summary, from a server performance perspective, the CA and clients
should in most cases use RSA as the signature algorithm. The only excep-
tion is when the system load consists mostly of initial authentication with
a modulus of 2048 bits length. For renewal of certificates, RSA generally
outperforms DSA, especially when using modulus lengths of less than 2048
bits. The problem with using RSA on the client is that the key generation is
time-consuming, which may result in too long delays when users log in. One
possible solution to this problem is to use DSA for the initial client certificate,
then use RSA keys when renewing the certificate. The RSA keys used for
new certificates could be generated as a background process, so that the key
generation delay would not be noticeable to the user. This means that the
first renewal will have message protection using DSA, while all subsequent

62

messages will use RSA, which makes sense for a system where users frequently
renew their certificates. On the other hand, if one wishes to use only one
signature algorithm for everything, the best choice is probably DSA, due to
the short key generation times on the client and acceptable performance on
the server side, especially when one considers the fact that the AS can scale
horizontally by adding more servers and a load balancer.

It is difficult to provide a good estimate for the load generated by e.g.
ten thousand users of such a system without observing an actual production
system, but a short discussion of this is in order. If one assumes that all
of those ten thousand users log on at the start of a work day, distributed
evenly from 08:00 to 08:30, the system load would be 10000/(60 ∗ 30), or
approximately 5.6, issued certificates per second. If they all log on between
08:00 and 08:05, the load would be approximately 33 issued certificates per
second. As seen in table 5.9, if we use modulus lengths of 1024 bits, one
single Dell PE 2650 server is able to handle almost twice that load, which
translates to nearly twenty thousand users in this scenario. For renewal of
certificates, the performance is even better, and as mentioned previously,
the AS can be trivially scaled horizontally by using HTTP load balancers.
The conclusion is that performance-wise, the implemented system fulfills the
specified requirements.

63

Chapter 6

Conclusions

The work described in this thesis has resulted in a functional and scalable
implementation, but there is a lot more work to do, both research and system
development, before it is ready to be used as a production system. This
chapter gives suggestions for the road ahead, and repeats the key points
learned during the project work.

6.1 Key learning points

The key points that can be extracted from the design, analysis, implemen-
tation and testing of the system are the following: The solution works, it
protects user credentials when ordinary servers are compromised, it protects
against network attacks, and it provides strong authentication with single
sign-on using a PKI.

However, as the security analysis in section 5.3 shows, the proposed sys-
tem design creates new vulnerabilities, particularly the active attack illus-
trated in figure 5.3. Furthermore, in password-only mode, the AS does not
act as a CA, because it does not verify the link between the identity and the
public key. The AS may therefore sign an invalid certificate. The end result
is that some of the responsibilities of the CA is shifted to the client, because
the client has to validate the contents of its own certificate. The client should
always do this nevertheless, but with a proper CA, failure to do so will not
enable an attacker to impersonate the user.

The key learning point from the performance analysis and testing is that
for a typical installation using 1024-bit modulus lengths for all participants,
the system implementation is definitely practical. First of all, the one server
used in the tests is able to handle close to twenty thousand users, and sec-
ond, it can be scaled horizontally. When choosing a public-key algorithm,

64

using RSA in place of DSA will generally result in better performance on
the AS. However, key generation times for RSA keys are a potential problem
on typical client hardware, while DSA key generation times are not. DSA
parameter generation is so time-consuming that it is not practical to do this
on-the-fly. If the AS performance is a problem, so that RSA should be used
as the client signature algorithm, one might use a hybrid solution where the
clients use DSA for their initial authentication, and RSA for all subsequent
certification requests. This results in a “best of both worlds” scenario: Fast
initial key generation on the client and a higher performance on the AS.

6.2 Further work

The road ahead can be summarized as five tasks or areas where more work
is needed.

First of all, the client must be developed further. Implementing the client
as a PKCS#11 software token, as KX.509 does, might be a good idea. Fur-
thermore, extensive testing with existing applications should be carried out,
to verify that those applications are able to use certificates generated in real-
time.

Second, support for hardware token based authentication should be im-
plemented and tested. The suggestion presented here is to use the message
protection mechanism in CMP for this purpose. If this approach is used,
token based authentication will look like a certificate renewal request to the
AS, and the client should only need minor modifications. The AS, however,
will need a mechanism for specifying trust levels, either by including it as a
data field in the issued certificate, or by using different CA root certificates
for different trust levels.

Third, more realistic performance tests should be carried out, preferably
with several hundred, or even thousand, clients. As part of this work, hor-
izontal scaling using HTTP load balancers could also be implemented and
tested.

Fourth, a user database or directory should be developed, and the server
implementation modified so that it performs its verifier lookups by querying
the database. LDAP might be a viable option for the protocol used to fetch
user verifiers. Mechanisms for throttling or limiting initial authentication
should also be designed, to avoid the security vulnerability where an attacker
can perform unaudited on-line password guesses.

Fifth, an alternative password-only initial authentication using four mes-
sages could be designed, to make the AS act as a proper CA in password-only
mode. This will probably violate the assumption that the AS should be state-

65

less, which creates new challenges for the scalability of the system.
Finally, standardization work could be carried out. One possible approach

is to submit an experimental RFC to the IETF. Then, one might consider
further work to write a standards track RFC that formally specifies the sys-
tem. To be able to standardize the scheme as an IETF RFC, one might have
to use a different BPKAS than SPEKE due to patent issues.

6.3 Summary

As a final summary, the system performs well enough to be used in orga-
nizations with tens of thousands of users. The implementation provides a
simple mechanism for bootstrapping a PKI using password-only authentica-
tion. However, the provided PKI can be used only for authentication, or
possibly digital signatures, due to its on-the-fly generation of keys and cer-
tificates. To be able to encrypt a message to a user, one has to know that
user’s public key in advance, and this is not possible with the suggested sys-
tem design. Still, being able to provide a cheap, scalable PKI solution that
can be used for authentication is a goal in itself. As a matter of fact, that
was the specific task given in the assignment that resulted in this thesis.

66

Bibliography

[1] C. Adams, S. Farrell. Internet X.509 Public Key Infrastructure Certifi-
cate Management Protocols. IETF RFC 2510.
Online: http://www.ietf.org/rfc/rfc2510.txt (Last checked 2005-05-16)

[2] C. Allen, T. Dierks. The TLS Protocol Version 1.0. IETF RFC 2246.
Online: http://www.ietf.org/rfc/rfc2246.txt (Last checked 2005-04-27)

[3] A. Arsenault, S. Farrell. Securely Available Credentials - Requirements.
IETF RFC 3157.
Online: http://www.ietf.org/rfc/rfc3157.txt (Last checked 2005-05-15)

[4] Steven M. Bellovin, Michael Merritt. Augmented Encrypted Key Ex-
change: Password-Based Protocols Secure Against Dictionary Attacks
and Password File Compromise.
Online: http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps
(Last checked: 2005-02-28)

[5] Steven M. Bellovin, Michael Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks. Pro-
ceedings: IEEE Symposium on Research in Security and Privacy, 1992.
Online: http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
(Last checked: 2005-03-14)

[6] Michael Burrows, Martin Abadi, Roger Needham. A Logic of Authen-
tication
Online: http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-39.pdf
(Last checked: 2005-05-08)

[7] Whitfield Diffie, Martin E. Hellman. New Directions in Cryptography.
Stanford University, 1976.
Online: http://crypto.csail.mit.edu/classes/6.857/papers/diffie-hellman.pdf
(Last checked: 2005-05-16)

67

http://www.ietf.org/rfc/rfc2510.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3157.txt
http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-39.pdf
http://crypto.csail.mit.edu/classes/6.857/papers/diffie-hellman.pdf

[8] William Doster, Marcus Watts, Dan Hyde. The KX.509 Protocol.
Online: http://www.citi.umich.edu/techreports/reports/citi-tr-01-2.pdf

[9] Martin Eian. Public key infrastructure in large scale access control. Nor-
wegian University of Science and Technology, Faculty of Information
Technology, Mathematics and Electrical Engineering, 2004.

[10] S. Farrell, Ed. Securely Available Credentials Protocol. IETF RFC 3767.
Online: http://www.ietf.org/rfc/rfc3767.txt (Last checked 2005-05-15)

[11] Dieter Gollmann. Computer Security. John Wiley & Sons, Ltd., 1999.
ISBN 0-471-97844-2.

[12] D. Gustafson, M. Just, M. Nystrom. Securely Available Credentials
(SACRED) - Credential Server Framework. IETF RFC 3760.
Online: http://www.ietf.org/rfc/rfc3760.txt (Last checked 2005-05-15)

[13] D. Harkins, D. Carrel. The Internet Key Exchange (IKE). IETF RFC
2409.
Online: http://www.ietf.org/rfc/rfc2409.txt (Last checked 2005-04-27)

[14] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. IETF RFC 2459.
Online: http://www.ietf.org/rfc/rfc2459.txt (Last checked 2005-05-25)

[15] ITU-T. Recommendation X.509. Information Technology - Open Sys-
tems Interconnection - The Directory: Public-Key and Attribute Cer-
tificate Frameworks. International Telecommunication Union, 2000.

[16] David P. Jablon. Extended Password Key Exchange Protocols Immune
to Dictionary Attack.
Online: http://www.jablon.org/jab97.pdf (Last checked: 2005-03-14)

[17] David P. Jablon. Research Papers on Password-based Cryptography.
Online: http://www.jablon.org/passwordlinks.html (Last checked:
2005-05-15)

[18] David P. Jablon. Strong Password-Only Authenticated Key Exchange.
Online: http://www.jablon.org/jab96.pdf (Last checked: 2005-03-14)

[19] Charlie Kaufman, Radia Perlman. PDM: A New Strong Password-
Based Protocol. Proceedings: 10th USENIX Security Symposium,
USENIX Association, 1997.
Online:

68

http://www.citi.umich.edu/techreports/reports/citi-tr-01-2.pdf
http://www.ietf.org/rfc/rfc3767.txt
http://www.ietf.org/rfc/rfc3760.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.jablon.org/jab97.pdf
http://www.jablon.org/passwordlinks.html
http://www.jablon.org/jab96.pdf

http://www.usenix.org/events/sec01/full papers/kaufman/kaufman.pdf
(Last checked: 2005-04-14)

[20] J. Kohl, C. Neuman. The Evolution of the Kerberos Authentication
Service
Online: ftp://athena-dist.mit.edu/pub/kerberos/doc/krb evol.PS
(Last checked: 2005-05-08)

[21] J. Kohl, C. Neuman. The Kerberos Network Authentication Service
(V5). IETF RFC 1510.
Online: http://www.ietf.org/rfc/rfc1510.txt (Last checked: 2005-04-
27)

[22] Olga Kornievskaia, Peter Honeyman, Bill Doster, Kevin Coffman.
Kerberized Credential Translation: A Solution to Web Access Control.
Online: http://www.citi.umich.edu/techreports/reports/citi-tr-01-5.pdf

[23] Taekyoung Kwon. Authentication and Key Agreement Via Memorable
Password. Proceedings: Network and Distributed System Security
Symposium 2001, Internet Society.
Online: http://www.isoc.org/isoc/conferences/ndss/01/2001/papers/kwon.pdf
(Last checked: 2005-05-16)

[24] Rich Lee, Jay E. Israel. Understanding the Role of Identification and
Authentication in NetWare 4. Novell, Inc., 1994.
Online: http://developer.novell.com/research/appnotes/1994/october/02/
(Last checked: 2005-05-15)

[25] M. Myers, C. Adams, D. Solo, D. Kemp. Internet X.509 Certificate
Request Message Format. IETF RFC 2511.
Online: http://www.ietf.org/rfc/rfc2511.txt (Last checked 2005-05-16)

[26] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams. X.509 In-
ternet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. IETF RFC 2560.
Online: http://www.ietf.org/rfc/rfc2560.txt (Last checked 2005-05-16)

[27] Alfred J. Menenez, Paul C. van Oorschot, Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1997. ISBN 0-8493-8523-7.
Online: http://www.cacr.math.uwaterloo.ca/hac (Last checked: 2005-
05-17)

[28] Paul C. van Oorschot, Michael J. Wiener. On Diffie-Hellman Key
Agreement with Short Exponents. Proceedings: EUROCRYPT ’96.

69

http://www.usenix.org/events/sec01/full_papers/kaufman/kaufman.pdf
ftp://athena-dist.mit.edu/pub/kerberos/doc/krb_evol.PS
http://www.ietf.org/rfc/rfc1510.txt
http://www.citi.umich.edu/techreports/reports/citi-tr-01-5.pdf
http://www.isoc.org/isoc/conferences/ndss/01/2001/papers/kwon.pdf
http://developer.novell.com/research/appnotes/1994/october/02/
http://www.ietf.org/rfc/rfc2511.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.cacr.math.uwaterloo.ca/hac

Online: http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/dhshortexp.pdf
(Last checked: 2005-05-23)

[29] Radia Perlman, Charlie Kaufman. Secure Password-Based Protocol
for Downloading a Private Key. Proceedings: 1999 Network and
Distributed System Security Symposium, Internet Society.
Online:
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/papers/perlman.pdf
(Last checked: 2005-02-13)

[30] R. Rivest. The MD5 Message-Digest Algorithm. IETF RFC 1321.
Online: http://www.ietf.org/rfc/rfc1321.txt (Last checked: 2005-05-
29)

[31] Bruce Schneier. Applied Cryptography, Second Edition, Protocols, Al-
gorithms and Source Code in C. John Wiley & Sons, Inc., 1996. ISBN
0-471-12845-7.

[32] Joseph J. Tardo, Kannan Alagappan. SPX: Global Authentication Us-
ing Public Key Certificates. Proceedings : IEEE Symposium on Secu-
rity and Privacy, 2001.
Online: http://ftp.digital.com/pub/Digital/SPX/SPX.v2.0-doc.tar.Z
(Last checked: 2005-01-25)

[33] B. Tung, L. Zhu. Public Key Cryptography for Initial Authentication
in Kerberos. IETF Internet Draft.
Online: http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-init-25.txt
(Last checked: 2005-05-09)

[34] M. Wahl, T. Howes, S. Kille. Lightweight Directory Access Protocol
(v3). IETF RFC 2251.
Online: http://www.ietf.org/rfc/rfc2251.txt (Last checked: 2005-05-
16)

[35] Joel N. Weber II. Kerberos Initial Authentication Methods. IETF
Internet Draft.
Online: http://mirrors.isc.org/pub/www.watersprings.org/pub/id/
draft-weber-krb-wg-kerberos-initial-authentication-00.txt (Last
checked: 2005-05-10)

[36] Thomas Wu. The Secure Remote Password Protocol. Stanford Univer-
sity, 1997.
Online: ftp://srp.stanford.edu/pub/srp/srp.ps (Last checked: 2005-02-
08)

70

http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/dhshortexp.pdf
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/papers/perlman.pdf
http://www.ietf.org/rfc/rfc1321.txt
http://ftp.digital.com/pub/Digital/SPX/SPX.v2.0-doc.tar.Z
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-init-25.txt
http://www.ietf.org/rfc/rfc2251.txt
http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-weber-krb-wg-kerberos-initial-authentication-00.txt
http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-weber-krb-wg-kerberos-initial-authentication-00.txt
ftp://srp.stanford.edu/pub/srp/srp.ps

[37] Thomas Wu. SRP-6: Improvements and Refinements to the Secure
Remote Password Protocol. Arcot Systems, 2002.
Online: http://srp.stanford.edu/srp6.ps (Last checked: 2005-02-08)

[38] Muxiang Zhang. Analysis of the SPEKE Password-Authenticated
Key Exchange Protocol. IEEE Communication Letters, Vol. 8, No. 1,
January 2004.
Online:
http://ieeexplore.ieee.org/iel5/4234/28208/01261928.pdf?isNumber=28208&
prod=JNL&arnumber=1261928&arSt=+63&ared=+65&arAuthor=Muxiang+Zhang
(Last checked: (2005-05-17)

[39] Advanced Encryption Standard (AES). FIPS Publication 197, National
Institute of Standards and Technology, 2001.
Online: http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
(Last checked: 2005-05-28)

[40] The Bouncy Castle Crypto APIs. Legion of the Bouncy Castle.
Online: http://www.bouncycastle.org/ (Last checked: 2005-05-22)

[41] Digital Signature Standard (DSS). FIPS Publication 186-2, National
Institute of Standards and Technology, 2000.
Online: http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
(Last checked: 2005-05-28)

[42] Java 2 Platform Standard Edition 5.0. Sun Microsystems Inc.
Online: http://java.sun.com/j2se/1.5.0/index.jsp (Last checked: 2005-
05-22)

[43] Kerberos: The Network Authentication Protocol.
Online: http://web.mit.edu/kerberos/www/ (Last checked 2005-05-08)

[44] MIT Kerberos Distribution Page.
Online: http://web.mit.edu/kerberos/www/dist/index.html (Last
checked 2005-05-08)

[45] The Heimdal Kerberos 5 implementation.
Online: http://www.pdc.kth.se/heimdal/ (Last checked 2005-05-08)

[46] John the Ripper password cracker. Openwall Project.
Online: http://www.openwall.com/john/ (Last checked: 2005-05-16)

[47] NOVOSEC Bouncy Castle Extensions. NOVOSEC AG.
Online: http://novosec-bc-ext.sourceforge.net/ (Last checked: 2005-
05-22)

71

http://srp.stanford.edu/srp6.ps
http://ieeexplore.ieee.org/iel5/4234/28208/01261928.pdf?isNumber=28208&prod=JNL&arnumber=1261928&arSt=+63&ared=+65&arAuthor=Muxiang+Zhang
http://ieeexplore.ieee.org/iel5/4234/28208/01261928.pdf?isNumber=28208&prod=JNL&arnumber=1261928&arSt=+63&ared=+65&arAuthor=Muxiang+Zhang
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.bouncycastle.org/
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://java.sun.com/j2se/1.5.0/index.jsp
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/dist/index.html
http://www.pdc.kth.se/heimdal/
http://www.openwall.com/john/
http://novosec-bc-ext.sourceforge.net/

[48] OpenVPN - An Open Source SSL VPN Solution. OpenVPN Solutions
LLC.
Online: http://openvpn.net/ (Last checked: 2005-05-31)

[49] P1363.2: Standard Specifications for Password-Based Public-Key Cryp-
tographic Techniques, version D20 (draft).
Online: http://grouper.ieee.org/groups/1363/passwdPK/draft.html
(Last checked: 2005-05-15)

[50] PKCS#1 v2.1: RSA Cryptography Standard. RSA Laboratories, 2002.
Online: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
(Last checked: 2005-05-28)

[51] PKCS#11 v2.20: Cryptographic Token Interface Standard. RSA
Laboratories, 2004.
Online: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
(Last checked: 2005-05-09)

[52] A Secure European System for Applications in a Multi-vendor Envi-
ronment.
Online: https://www.cosic.esat.kuleuven.ac.be/sesame/ (Last checked
2005-05-08)

[53] Secure Hash Standard (SHS). FIPS Publication 180-2, National Insti-
tute of Standards and Technology, 2002.
Online: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
(Last checked: 2005-05-29)

[54] Standard ECMA-219. Authentication and Privilege Attribute Security
Application with related Key Distribution Functions - Part 1, 2 and 3,
2nd edition. ECMA, 1996.
Online:
http://www.ecma-international.org/publications/files/ecma-st/ECMA-219.pdf
(Last checked 2005-05-12)

[55] Apache Jakarta Tomcat. The Apache Software Foundation.
Online: http://jakarta.apache.org/tomcat/index.html (Last checked:
2005-05-22)

[56] Windows 2000 Kerberos Authentication. Microsoft Corporation.
Online:
http://www.microsoft.com/windows2000/techinfo/howitworks/security/kerberos.asp
(Last checked: 2005-05-08)

72

http://openvpn.net/
http://grouper.ieee.org/groups/1363/passwdPK/draft.html
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
https://www.cosic.esat.kuleuven.ac.be/sesame/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-219.pdf
http://jakarta.apache.org/tomcat/index.html
http://www.microsoft.com/windows2000/techinfo/howitworks/security/kerberos.asp

[57] Kerberos Authentication in Windows Server 2003. Microsoft Corpora-
tion.
Online:
http://www.microsoft.com/windowsserver2003/technologies/security/kerberos/
(Last checked: 2005-05-08)

73

http://www.microsoft.com/windowsserver2003/technologies/security/kerberos/

Appendix A

Tomcat configuration

First, Tomcat 5.5.9 was downloaded and unpacked. Then, a new directory ’sso’ was created
in the ’webapps’ subdirectory. All directory references in this appendix are relative to
the Tomcat installation directory. The server was packed as a jar-file, diplom.jar, and
deployed as a web application together with the required Bouncy Castle libraries in the
webapps/sso/WEB-INF/lib directory. Directory structure of the webapps/sso directory:

eian@sigilion:~/jakarta-tomcat-5.5.9$ ls -lR webapps/sso/
webapps/sso/:
total 12
drwxr-xr-x 2 eian eian 4096 Apr 13 18:24 META-INF
drwxr-xr-x 3 eian eian 4096 May 1 19:37 WEB-INF
drwxr-xr-x 2 eian eian 4096 Mar 26 20:22 images

webapps/sso/META-INF:
total 4
-rw-r--r-- 1 eian eian 327 Mar 26 20:22 context.xml

webapps/sso/WEB-INF:
total 8
drwxr-xr-x 2 eian eian 4096 May 19 20:33 lib
-rw-r--r-- 1 eian eian 767 May 1 19:37 web.xml

webapps/sso/WEB-INF/lib:
total 2044
-rw-r--r-- 1 eian eian 115303 Apr 13 18:45 bcmail-jdk15-127.jar
-rw-r--r-- 1 eian eian 231518 Apr 13 18:45 bcpg-jdk15-127.jar
-rw-r--r-- 1 eian eian 1066809 Apr 13 18:45 bcprov-jdk15-127.jar
-rw-r--r-- 1 eian eian 462670 Apr 13 18:45 bctest-jdk15-127.jar
-rw-r--r-- 1 eian eian 36386 Apr 13 18:45 bctsp-jdk15-127.jar
-rw-r--r-- 1 eian eian 114016 May 24 11:47 diplom.jar

webapps/sso/images:
total 0

Contents of the web.xml file:

74

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<display-name>Single Sign-On</display-name>
<description>
Single Sign-On

</description>

<!-- SSO definition -->
<servlet>
<servlet-name>server</servlet-name>
<servlet-class>no.ntnu.item.ttm4900.server</servlet-class>
<load-on-startup>10</load-on-startup>

</servlet>

<!-- SSO mapping -->
<servlet-mapping>
<servlet-name>server</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

Relevant section of the conf/server.xml configuration file:

<Connector port="8080" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="100"
connectionTimeout="20000" disableUploadTimeout="true" />

Lines added to the beginning of bin/startup.sh and bin/shutdown.sh:

JAVA_HOME=/usr/local/jdk1.5.0_02
export JAVA_HOME

75

Appendix B

Debug output from server and
client

Example debug and timing output for initial authentication and two renewals. The pa-
rameters are 1024 bit modulus for SPEKE, client 1024 bit RSA signatures and CA 1024
bit DSA signatures. The hardware used is a Dell Latitude X200 laptop with a Pentium 3
M 800 MHz CPU as both server and client.

Client output:

H(P) = 653878565946713713149629104275478104571867727804
H(P)^2 = 427557179004530834336469072637328194198138589757732486381
698282038165706347500705335709834662416
Generating RSA key pair...OK
RSA key generation took 1982 milliseconds.
H(P)^(2RA) = 48042943166562950269108891469154630824591120320699981
927023647747298578722341172282882221575811488963581437718930971387
779250205671568555796390090430630164655587047476464435468885403519
730566843973927994410760863593672637367600866409749692729507065278
71261954740855814637288493901688469508235764680409439740
H(P)^(2RB) = 91818173367882152559246165019962667307642583219907659
894739249200204386274637560895661112186884736769535160736318231691
235711725976865017866377219631237070183824553408393316364434124440
990933394427775570395323320252475479983628768152972752835572703277
886228604321684535512794612384773635188441741621802433097
H(P)^(4RA*RB) = 10332058006084836158668365831613556916870570080972
255144259163261746061587393266633567468641948418802038011680000427
418594720124895948341658560922916123391306730929537832214774580028
848287585986366176183116793298636040152945005476797320090681459738
1415485114642368307500376690514543664827046026755651544542819
Using encrypted CA root certificate from Certification Response.
Checking DSA signature...
CA self-signature verified!
Checking DSA signature...
CA signature verified!

76

Certificate contains correct RSA public key and name.
Renewing certificate...
Generating RSA key pair...OK
RSA key generation took 2279 milliseconds.
Checking DSA signature...
CA signature verified!
Certificate contains correct RSA public key and name.
Renewing certificate...
Generating RSA key pair...OK
RSA key generation took 685 milliseconds.
Checking DSA signature...
CA signature verified!
Certificate contains correct RSA public key and name.

Server output (from logs/catalina.out in the tomcat installation directory):

CONTENT-TYPE application/pkixcmp
Subject name: DC=no,DC=ntnu,OU=people,UID=eian
OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 29 milliseconds.
RB = 912269742287307980244150155958401395773363353633313976686230
2240611555836828291117165974167781073107
Generation of RB took 1 milliseconds.
H(P)^(2RA) = 48042943166562950269108891469154630824591120320699981
927023647747298578722341172282882221575811488963581437718930971387
779250205671568555796390090430630164655587047476464435468885403519
730566843973927994410760863593672637367600866409749692729507065278
71261954740855814637288493901688469508235764680409439740
H(P)^(2RB) = 91818173367882152559246165019962667307642583219907659
894739249200204386274637560895661112186884736769535160736318231691
235711725976865017866377219631237070183824553408393316364434124440
990933394427775570395323320252475479983628768152972752835572703277
886228604321684535512794612384773635188441741621802433097
H(P)^(4RA*RB) = 10332058006084836158668365831613556916870570080972
255144259163261746061587393266633567468641948418802038011680000427
418594720124895948341658560922916123391306730929537832214774580028
848287585986366176183116793298636040152945005476797320090681459738
1415485114642368307500376690514543664827046026755651544542819
SPEKE key calculation took 81 milliseconds.
AES encryption of client certificate took 8 milliseconds.
AES encryption of CA certificate took 14 milliseconds.
CONTENT-TYPE application/pkixcmp
Client signature verified!
Verification of client signature took 8 milliseconds.
CA signature verified!
Verification of CA signature took 42 milliseconds.
Subject name: DC=no,DC=ntnu,OU=people,UID=eian

77

OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 29 milliseconds.
CONTENT-TYPE application/pkixcmp
Client signature verified!
Verification of client signature took 2 milliseconds.
CA signature verified!
Verification of CA signature took 46 milliseconds.
Subject name: DC=no,DC=ntnu,OU=people,UID=eian
OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 26 milliseconds.

Example debug and timing output for initial authentication and two renewals. The pa-
rameters are 2048 bit modulus for SPEKE, client 768 bit DSA signatures and CA 2048
bit RSA signatures. The hardware used is a Dell Latitude X200 laptop with a Pentium 3
M 800 MHz CPU as both server and client.

Client output:

H(P) = 653878565946713713149629104275478104571867727804
H(P)^2 = 427557179004530834336469072637328194198138589757732486381
698282038165706347500705335709834662416
Generating DSA key pair...OK
DSA key generation took 21 milliseconds.
H(P)^(2RA) = 84959884469439467038969208072606804615200824388243828
784062711788956887488537253671192233058765849148634338480015795175
928191839034181949177815229567329383236527025596960915048327439924
661007099992961265483500553448745704928885143874094301832335719033
960146518624355883610318698412554719159092419164699454524849532865
144787576548433439693287317651463577231624599723557672998340987949
298393484431921048561101933924937168484626767860651251537447083623
539587207350950476760084955641357476245874195809730706355272562335
748635063519742889859106873489205531057688498034680049713060664851
15535476578355224116538066656636989
H(P)^(2RB) = 16093718631620732657254352902601670216347931706501457
260553086169174238918110849208523546021568973595881958068741932327
473183964787579413203194083345524240640909368068382829996975681474
970761295456641645646521418396581411273239979243612619809949518977
770609135989999077891083635664153989096988012672736287292976776929
952026720116470828716077027647330532039132831013940824498857391804
527500708305770795120581626877221973184258457266254448750266711735
037924115093328931462396919548580047720781162598218207318376677372
117142672677857650206418212982914568344841708209884328208311189536
432674932007390019575510264599434454
H(P)^(4RA*RB) = 21180657027243790676177405391490688684429676949912

78

302838390895308521094944568970886110523913146334633222326812434214
625876246185839708200923295281683656449155910684614175576664422555
943264196897692629245994538407292198871323638117392823735578054910
289023235682126761548815540123190031006868772393604377368585466200
779405942132517777985997989291666489790383536652489322720836871069
049751801803688055507470063173106009423450692699890279359126688634
953939491864902834668005240406320268836607735651219901178270573048
975741540694804297086244458597337829079255839409494859358514447509
167018600066345191584636514733913336725
Using encrypted CA root certificate from Certification Response.
Checking RSA signature...
CA self-signature verified!
Checking RSA signature...
CA signature verified!
Certificate contains correct DSA public key and name.
Renewing certificate...
Generating key pair...OK
Key generation took 12 milliseconds.
Checking RSA signature...
CA signature verified!
Certificate contains correct DSA public key and name.
Renewing certificate...
Generating key pair...OK
Key generation took 12 milliseconds.
Checking RSA signature...
CA signature verified!
Certificate contains correct DSA public key and name.

Server output (from logs/catalina.out in the tomcat installation directory):

CONTENT-TYPE application/pkixcmp
Subject name: DC=no,DC=ntnu,OU=people,UID=eian
OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 271 milliseconds.
RB = 867841658393189978691184481451209358898304680510995470895876
8727082575130760724907094602212800735169
Generation of RB took 0 milliseconds.
H(P)^(2RA) = 84959884469439467038969208072606804615200824388243828
784062711788956887488537253671192233058765849148634338480015795175
928191839034181949177815229567329383236527025596960915048327439924
661007099992961265483500553448745704928885143874094301832335719033
960146518624355883610318698412554719159092419164699454524849532865
144787576548433439693287317651463577231624599723557672998340987949
298393484431921048561101933924937168484626767860651251537447083623
539587207350950476760084955641357476245874195809730706355272562335
748635063519742889859106873489205531057688498034680049713060664851
15535476578355224116538066656636989

79

H(P)^(2RB) = 16093718631620732657254352902601670216347931706501457
260553086169174238918110849208523546021568973595881958068741932327
473183964787579413203194083345524240640909368068382829996975681474
970761295456641645646521418396581411273239979243612619809949518977
770609135989999077891083635664153989096988012672736287292976776929
952026720116470828716077027647330532039132831013940824498857391804
527500708305770795120581626877221973184258457266254448750266711735
037924115093328931462396919548580047720781162598218207318376677372
117142672677857650206418212982914568344841708209884328208311189536
432674932007390019575510264599434454
H(P)^(4RA*RB) = 21180657027243790676177405391490688684429676949912
302838390895308521094944568970886110523913146334633222326812434214
625876246185839708200923295281683656449155910684614175576664422555
943264196897692629245994538407292198871323638117392823735578054910
289023235682126761548815540123190031006868772393604377368585466200
779405942132517777985997989291666489790383536652489322720836871069
049751801803688055507470063173106009423450692699890279359126688634
953939491864902834668005240406320268836607735651219901178270573048
975741540694804297086244458597337829079255839409494859358514447509
167018600066345191584636514733913336725
SPEKE key calculation took 334 milliseconds.
AES encryption of client certificate took 4 milliseconds.
AES encryption of CA certificate took 2 milliseconds.
CONTENT-TYPE application/pkixcmp
Client signature verified!
Verification of client signature took 27 milliseconds.
CA signature verified!
Verification of CA signature took 20 milliseconds.
Subject name: DC=no,DC=ntnu,OU=people,UID=eian
OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 263 milliseconds.
CONTENT-TYPE application/pkixcmp
Client signature verified!
Verification of client signature took 28 milliseconds.
CA signature verified!
Verification of CA signature took 16 milliseconds.
Subject name: DC=no,DC=ntnu,OU=people,UID=eian
OID: 0.9.2342.19200300.100.1.1
OIDValue: eian
User name: eian
Verifier: 653878565946713713149629104275478104571867727804
Signing client certificate took 267 milliseconds.

80

Appendix C

OpenSSL asn1parse of a
PKIMessage

This is an example of a PKIMessage, a Certification Request using an RSA signature
for message protection. The old certificate included in the request is signed with a DSA
signature from the CA.

eian@sigilion:~/fag/diplom/sw$ openssl asn1parse -inform der <certreq.der
0:d=0 hl=4 l=1633 cons: SEQUENCE
4:d=1 hl=3 l= 196 cons: SEQUENCE
7:d=2 hl=2 l= 1 prim: INTEGER :01
10:d=2 hl=2 l= 76 cons: cont [4]
12:d=3 hl=2 l= 74 cons: SEQUENCE
14:d=4 hl=2 l= 18 cons: SET
16:d=5 hl=2 l= 16 cons: SEQUENCE
18:d=6 hl=2 l= 10 prim: OBJECT :domainComponent
30:d=6 hl=2 l= 2 prim: PRINTABLESTRING :no
34:d=4 hl=2 l= 20 cons: SET
36:d=5 hl=2 l= 18 cons: SEQUENCE
38:d=6 hl=2 l= 10 prim: OBJECT :domainComponent
50:d=6 hl=2 l= 4 prim: PRINTABLESTRING :ntnu
56:d=4 hl=2 l= 15 cons: SET
58:d=5 hl=2 l= 13 cons: SEQUENCE
60:d=6 hl=2 l= 3 prim: OBJECT :organizationalUnitName
65:d=6 hl=2 l= 6 prim: PRINTABLESTRING :people
73:d=4 hl=2 l= 13 cons: SET
75:d=5 hl=2 l= 11 cons: SEQUENCE
77:d=6 hl=2 l= 3 prim: OBJECT :commonName
82:d=6 hl=2 l= 4 prim: PRINTABLESTRING :eian
88:d=2 hl=2 l= 57 cons: cont [4]
90:d=3 hl=2 l= 55 cons: SEQUENCE
92:d=4 hl=2 l= 18 cons: SET
94:d=5 hl=2 l= 16 cons: SEQUENCE
96:d=6 hl=2 l= 10 prim: OBJECT :domainComponent
108:d=6 hl=2 l= 2 prim: PRINTABLESTRING :no

81

112:d=4 hl=2 l= 20 cons: SET
114:d=5 hl=2 l= 18 cons: SEQUENCE
116:d=6 hl=2 l= 10 prim: OBJECT :domainComponent
128:d=6 hl=2 l= 4 prim: PRINTABLESTRING :ntnu
134:d=4 hl=2 l= 11 cons: SET
136:d=5 hl=2 l= 9 cons: SEQUENCE
138:d=6 hl=2 l= 3 prim: OBJECT :commonName
143:d=6 hl=2 l= 2 prim: PRINTABLESTRING :ca
147:d=2 hl=2 l= 17 cons: cont [0]
149:d=3 hl=2 l= 15 prim: GENERALIZEDTIME :20050528143109Z
166:d=2 hl=2 l= 15 cons: cont [1]
168:d=3 hl=2 l= 13 cons: SEQUENCE
170:d=4 hl=2 l= 9 prim: OBJECT :sha1WithRSAEncryption
181:d=4 hl=2 l= 0 prim: NULL
183:d=2 hl=2 l= 18 cons: cont [5]
185:d=3 hl=2 l= 16 prim: OCTET STRING
203:d=1 hl=4 l= 281 cons: cont [2]
207:d=2 hl=4 l= 277 cons: SEQUENCE
211:d=3 hl=4 l= 273 cons: SEQUENCE
215:d=4 hl=4 l= 269 cons: SEQUENCE
219:d=5 hl=2 l= 16 prim: INTEGER :1C76EA7F40FA365A56

A5182216D718AC
237:d=5 hl=3 l= 248 cons: SEQUENCE
240:d=6 hl=2 l= 1 prim: cont [0]
243:d=6 hl=2 l= 81 cons: cont [5]
245:d=7 hl=2 l= 18 cons: SET
247:d=8 hl=2 l= 16 cons: SEQUENCE
249:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
261:d=9 hl=2 l= 2 prim: PRINTABLESTRING :no
265:d=7 hl=2 l= 20 cons: SET
267:d=8 hl=2 l= 18 cons: SEQUENCE
269:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
281:d=9 hl=2 l= 4 prim: PRINTABLESTRING :ntnu
287:d=7 hl=2 l= 15 cons: SET
289:d=8 hl=2 l= 13 cons: SEQUENCE
291:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName
296:d=9 hl=2 l= 6 prim: PRINTABLESTRING :people
304:d=7 hl=2 l= 20 cons: SET
306:d=8 hl=2 l= 18 cons: SEQUENCE
308:d=9 hl=2 l= 10 prim: OBJECT :userId
320:d=9 hl=2 l= 4 prim: PRINTABLESTRING :eian
326:d=6 hl=3 l= 159 cons: cont [6]
329:d=7 hl=2 l= 13 cons: SEQUENCE
331:d=8 hl=2 l= 9 prim: OBJECT :rsaEncryption
342:d=8 hl=2 l= 0 prim: NULL
344:d=7 hl=3 l= 141 prim: BIT STRING
488:d=1 hl=3 l= 132 cons: cont [0]
491:d=2 hl=3 l= 129 prim: BIT STRING
623:d=1 hl=4 l=1010 cons: cont [1]

82

627:d=2 hl=4 l=1006 cons: SEQUENCE
631:d=3 hl=4 l=1002 cons: SEQUENCE
635:d=4 hl=4 l= 645 cons: SEQUENCE
639:d=5 hl=2 l= 3 cons: cont [0]
641:d=6 hl=2 l= 1 prim: INTEGER :02
644:d=5 hl=2 l= 1 prim: INTEGER :01
647:d=5 hl=4 l= 299 cons: SEQUENCE
651:d=6 hl=2 l= 7 prim: OBJECT :dsaWithSHA1
660:d=6 hl=4 l= 286 cons: SEQUENCE
664:d=7 hl=3 l= 129 prim: INTEGER :854CA950FA74969FC4

7029336D466FBC58C8D458A4CD6CB45E7C33F5F05B61920D343A4E8249ED64EDA2
6EFEBF8DAE985AA98B04B0D3301EB108AAB99992336DE061C61F7AF3400B97A3A7
AADDFE95F93E4C6DFB9DC6FCF2EAF9C56CB5A6FBAE884EF46F3AC18C24149A7B30
ABD6EFB6EE0463A15A0C2169EE866C7AD8961D37
796:d=7 hl=2 l= 21 prim: INTEGER :DFA669BD2AD265EE73

3DF6E5A239C13ACEF7837D
819:d=7 hl=3 l= 128 prim: INTEGER :0713CCC777B66D9905

81B144CB5047349F34A404A8F3E6C28440E89993F53C2E8C5956845E2EB8908BEE
2F084C4EAFDA9FA6D81609C878E23365A0E6EDE010CD59DC1FB0CC27627F463192
34DB229E1A6C19985CEA63F7CD86F062AB767FBDD0ADAAC03DF92374F1B53A1B58
F9127BFB0ACFB4D776B1BB870278F0873A024D82
950:d=5 hl=2 l= 55 cons: SEQUENCE
952:d=6 hl=2 l= 18 cons: SET
954:d=7 hl=2 l= 16 cons: SEQUENCE
956:d=8 hl=2 l= 10 prim: OBJECT :domainComponent
968:d=8 hl=2 l= 2 prim: PRINTABLESTRING :no
972:d=6 hl=2 l= 20 cons: SET
974:d=7 hl=2 l= 18 cons: SEQUENCE
976:d=8 hl=2 l= 10 prim: OBJECT :domainComponent
988:d=8 hl=2 l= 4 prim: PRINTABLESTRING :ntnu
994:d=6 hl=2 l= 11 cons: SET
996:d=7 hl=2 l= 9 cons: SEQUENCE
998:d=8 hl=2 l= 3 prim: OBJECT :commonName
1003:d=8 hl=2 l= 2 prim: PRINTABLESTRING :ca
1007:d=5 hl=2 l= 30 cons: SEQUENCE
1009:d=6 hl=2 l= 13 prim: UTCTIME :050528143108Z
1024:d=6 hl=2 l= 13 prim: UTCTIME :050529003108Z
1039:d=5 hl=2 l= 81 cons: SEQUENCE
1041:d=6 hl=2 l= 18 cons: SET
1043:d=7 hl=2 l= 16 cons: SEQUENCE
1045:d=8 hl=2 l= 10 prim: OBJECT :domainComponent
1057:d=8 hl=2 l= 2 prim: PRINTABLESTRING :no
1061:d=6 hl=2 l= 20 cons: SET
1063:d=7 hl=2 l= 18 cons: SEQUENCE
1065:d=8 hl=2 l= 10 prim: OBJECT :domainComponent
1077:d=8 hl=2 l= 4 prim: PRINTABLESTRING :ntnu
1083:d=6 hl=2 l= 15 cons: SET
1085:d=7 hl=2 l= 13 cons: SEQUENCE
1087:d=8 hl=2 l= 3 prim: OBJECT :organizationalUnitName

83

1092:d=8 hl=2 l= 6 prim: PRINTABLESTRING :people
1100:d=6 hl=2 l= 20 cons: SET
1102:d=7 hl=2 l= 18 cons: SEQUENCE
1104:d=8 hl=2 l= 10 prim: OBJECT :userId
1116:d=8 hl=2 l= 4 prim: PRINTABLESTRING :eian
1122:d=5 hl=3 l= 159 cons: SEQUENCE
1125:d=6 hl=2 l= 13 cons: SEQUENCE
1127:d=7 hl=2 l= 9 prim: OBJECT :rsaEncryption
1138:d=7 hl=2 l= 0 prim: NULL
1140:d=6 hl=3 l= 141 prim: BIT STRING
1284:d=4 hl=4 l= 299 cons: SEQUENCE
1288:d=5 hl=2 l= 7 prim: OBJECT :dsaWithSHA1
1297:d=5 hl=4 l= 286 cons: SEQUENCE
1301:d=6 hl=3 l= 129 prim: INTEGER :854CA950FA74969FC4
7029336D466FBC58C8D458A4CD6CB45E7C33F5F05B61920D343A4E8249ED64EDA2
6EFEBF8DAE985AA98B04B0D3301EB108AAB99992336DE061C61F7AF3400B97A3A7
AADDFE95F93E4C6DFB9DC6FCF2EAF9C56CB5A6FBAE884EF46F3AC18C24149A7B30
ABD6EFB6EE0463A15A0C2169EE866C7AD8961D37
1433:d=6 hl=2 l= 21 prim: INTEGER :DFA669BD2AD265EE73
3DF6E5A239C13ACEF7837D
1456:d=6 hl=3 l= 128 prim: INTEGER :0713CCC777B66D9905
81B144CB5047349F34A404A8F3E6C28440E89993F53C2E8C5956845E2EB8908BEE
2F084C4EAFDA9FA6D81609C878E23365A0E6EDE010CD59DC1FB0CC27627F463192
34DB229E1A6C19985CEA63F7CD86F062AB767FBDD0ADAAC03DF92374F1B53A1B58
F9127BFB0ACFB4D776B1BB870278F0873A024D82
1587:d=4 hl=2 l= 48 prim: BIT STRING

84

Appendix D

OpenVPN test

The client was running on a Dell Latitude X200 laptop with Debian Linux (sid), while the
server was running on a Dell Optiplex GX260 workstation with OpenBSD 3.5. The client
used a certificate with a 1024 bit RSA key, and the server and CA used a 1024 bit DSA key.

OpenVPN client configuration (openvpn client.conf):

client
dev tun0
proto udp
remote 129.241.75.217 53
resolv-retry infinite
nobind
user eian
group eian
persist-key
persist-tun
ca ca_1024_crt.pem
cert client_crt.pem
key client_key.pem
verb 3

OpenVPN server configuration (openvpn server.conf):

port 53
proto udp
dev tun0
ca /home/eian/fag/diplom/sw/ca_1024_crt.pem
cert server_crt.pem
key server_key.pem
dh dh1024.pem
server 10.8.0.0 255.255.255.0
ifconfig-pool-persist ipp.txt
keepalive 10 120
user nobody
group nobody

85

persist-key
persist-tun
status openvpn-status.log
verb 3

Client output:

eian@sigilion:~/fag/diplom/sw$ sudo openvpn --config openvpn_client.conf
Password:
Sat May 28 17:08:59 2005 OpenVPN 2.0 i386-pc-linux [SSL] [LZO] \
[EPOLL] built on May 4 2005
Sat May 28 17:08:59 2005 IMPORTANT: OpenVPN’s default port number \
is now 1194, based on an official port number assignmentby IANA. \
OpenVPN 2.0-beta16 and earlier used 5000 as the default port.
Sat May 28 17:08:59 2005 WARNING: No server certificate verification \
method has been enabled. See http://openvpn.net/howto.html#mitm for \
more info.
Sat May 28 17:08:59 2005 Control Channel MTU parms [L:1541 D:138 \
EF:38 EB:0 ET:0 EL:0]
Sat May 28 17:08:59 2005 Data Channel MTU parms [L:1541 D:1450 \
EF:41 EB:4 ET:0 EL:0]
Sat May 28 17:08:59 2005 Local Options hash (VER=V4): ’3514370b’
Sat May 28 17:08:59 2005 Expected Remote Options hash (VER=V4): \
’239669a8’
Sat May 28 17:08:59 2005 NOTE: UID/GID downgrade will be delayed \
because of --client, --pull, or --up-delay
Sat May 28 17:08:59 2005 UDPv4 link local: [undef]
Sat May 28 17:08:59 2005 UDPv4 link remote: 129.241.75.217:53
Sat May 28 17:08:59 2005 TLS: Initial packet from 129.241.75.217:53, \
sid=6275a9e6 a7f79385
Sat May 28 17:08:59 2005 VERIFY OK: depth=1, /DC=no/DC=ntnu/CN=ca
Sat May 28 17:08:59 2005 VERIFY OK: depth=0, /DC=no/DC=ntnu/CN=server
Sat May 28 17:08:59 2005 Data Channel Encrypt: Cipher ’BF-CBC’ \
initialized with 128 bit key
Sat May 28 17:08:59 2005 Data Channel Encrypt: Using 160 bit message \
hash ’SHA1’ for HMAC authentication
Sat May 28 17:08:59 2005 Data Channel Decrypt: Cipher ’BF-CBC’ \
initialized with 128 bit key
Sat May 28 17:08:59 2005 Data Channel Decrypt: Using 160 bit message \
hash ’SHA1’ for HMAC authentication
Sat May 28 17:08:59 2005 Control Channel: TLSv1, cipher TLSv1/SSLv3 \
DHE-DSS-AES256-SHA, 1024 bit DSA
Sat May 28 17:08:59 2005 [server] Peer Connection Initiated with \
129.241.75.217:53
Sat May 28 17:09:01 2005 SENT CONTROL [server]: ’PUSH_REQUEST’ \
(status=1)
Sat May 28 17:09:01 2005 PUSH: Received control message: \
’PUSH_REPLY,route 10.8.0.1,ping 10,ping-restart 120,ifconfig \
10.8.0.6 10.8.0.5’
Sat May 28 17:09:01 2005 OPTIONS IMPORT: timers and/or timeouts modified

86

Sat May 28 17:09:01 2005 OPTIONS IMPORT: --ifconfig/up options modified
Sat May 28 17:09:01 2005 OPTIONS IMPORT: route options modified
Sat May 28 17:09:01 2005 TUN/TAP device tun0 opened
Sat May 28 17:09:01 2005 /sbin/ifconfig tun0 10.8.0.6 pointopoint \
10.8.0.5 mtu 1500
Sat May 28 17:09:01 2005 /sbin/route add -net 10.8.0.1 netmask \
255.255.255.255 gw 10.8.0.5
Sat May 28 17:09:01 2005 GID set to eian
Sat May 28 17:09:01 2005 UID set to eian
Sat May 28 17:09:01 2005 Initialization Sequence Completed

eian@sigilion:~$ /sbin/ifconfig -a tun0
tun0 Link encap:UNSPEC HWaddr \
00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:10.8.0.6 P-t-P:10.8.0.5 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:336 (336.0 b) TX bytes:336 (336.0 b)

eian@sigilion:~$ ping 10.8.0.1
PING 10.8.0.1 (10.8.0.1): 56 data bytes
64 bytes from 10.8.0.1: icmp_seq=0 ttl=255 time=23.897 ms
64 bytes from 10.8.0.1: icmp_seq=1 ttl=255 time=21.179 ms
64 bytes from 10.8.0.1: icmp_seq=2 ttl=255 time=90.488 ms
64 bytes from 10.8.0.1: icmp_seq=3 ttl=255 time=24.472 ms
--- 10.8.0.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.179/40.009/90.488/29.171 ms

Server output:

bash-2.05b# /usr/local/sbin/openvpn --config \
/usr/local/etc/openvpn_server.conf
Sat May 28 17:05:28 2005 OpenVPN 2.0 i386-unknown-openbsd3.5 [SSL] \
built on Apr 26 2005
Sat May 28 17:05:28 2005 Diffie-Hellman initialized with 1024 bit key
Sat May 28 17:05:28 2005 TLS-Auth MTU parms [L:1541 D:138 EF:38 EB:0 \
ET:0 EL:0]

Sat May 28 17:05:28 2005 gw 129.241.75.1
Sat May 28 17:05:28 2005 /sbin/ifconfig tun0 destroy
Sat May 28 17:05:28 2005 /sbin/ifconfig tun0 create
Sat May 28 17:05:28 2005 NOTE: Tried to delete pre-existing tun/tap \
instance -- No Problem if failure
Sat May 28 17:05:28 2005 /sbin/ifconfig tun0 10.8.0.1 10.8.0.2 mtu \
1500 netmask 255.255.255.255 up
Sat May 28 17:05:28 2005 TUN/TAP device /dev/tun0 opened
Sat May 28 17:05:28 2005 /sbin/route add -net 10.8.0.0 10.8.0.2 \
-netmask 255.255.255.0

87

add net 10.8.0.0: gateway 10.8.0.2
Sat May 28 17:05:28 2005 Data Channel MTU parms [L:1541 D:1450 EF:41 \
EB:4 ET:0 EL:0]

Sat May 28 17:05:28 2005 GID set to nobody
Sat May 28 17:05:28 2005 UID set to nobody
Sat May 28 17:05:28 2005 UDPv4 link local (bound): [undef]:53
Sat May 28 17:05:28 2005 UDPv4 link remote: [undef]
Sat May 28 17:05:28 2005 MULTI: multi_init called, r=256 v=256
Sat May 28 17:05:28 2005 IFCONFIG POOL: base=10.8.0.4 size=62
Sat May 28 17:05:28 2005 IFCONFIG POOL LIST
Sat May 28 17:05:28 2005 Initialization Sequence Completed
Sat May 28 17:08:51 2005 MULTI: multi_create_instance called
Sat May 28 17:08:51 2005 80.202.29.148:31704 Re-using SSL/TLS context
Sat May 28 17:08:51 2005 80.202.29.148:31704 Control Channel MTU parms \
[L:1541 D:138 EF:38 EB:0 ET:0 EL:0]
Sat May 28 17:08:51 2005 80.202.29.148:31704 Data Channel MTU parms \
[L:1541 D:1450 EF:41 EB:4 ET:0 EL:0]
Sat May 28 17:08:51 2005 80.202.29.148:31704 Local Options hash \
(VER=V4): ’239669a8’
Sat May 28 17:08:51 2005 80.202.29.148:31704 Expected Remote Options \
hash (VER=V4): ’3514370b’
Sat May 28 17:08:51 2005 80.202.29.148:31704 TLS: Initial packet from \
80.202.29.148:31704, sid=19da93d9 34fd344f
Sat May 28 17:08:52 2005 80.202.29.148:31704 VERIFY OK: depth=1, \
/DC=no/DC=ntnu/CN=ca
Sat May 28 17:08:52 2005 80.202.29.148:31704 VERIFY OK: depth=0, \
/DC=no/DC=ntnu/OU=people/UID=eian
Sat May 28 17:08:52 2005 80.202.29.148:31704 Data Channel Encrypt: \
Cipher ’BF-CBC’ initialized with 128 bit key
Sat May 28 17:08:52 2005 80.202.29.148:31704 Data Channel Encrypt: \
Using 160 bit message hash ’SHA1’ for HMAC authentication
Sat May 28 17:08:52 2005 80.202.29.148:31704 Data Channel Decrypt: \
Cipher ’BF-CBC’ initialized with 128 bit key
Sat May 28 17:08:52 2005 80.202.29.148:31704 Data Channel Decrypt: \
Using 160 bit message hash ’SHA1’ for HMAC authentication
Sat May 28 17:08:52 2005 80.202.29.148:31704 Control Channel: TLSv1, \
cipher TLSv1/SSLv3 DHE-DSS-AES256-SHA, 1024 bit RSA
Sat May 28 17:08:52 2005 80.202.29.148:31704 [] Peer Connection \
Initiated with 80.202.29.148:31704
Sat May 28 17:08:52 2005 80.202.29.148:31704 MULTI: Learn: 10.8.0.6 -> \
80.202.29.148:31704
Sat May 28 17:08:52 2005 80.202.29.148:31704 MULTI: primary virtual IP \
for 80.202.29.148:31704: 10.8.0.6
Sat May 28 17:08:53 2005 80.202.29.148:31704 PUSH: Received control \
message: ’PUSH_REQUEST’
Sat May 28 17:08:53 2005 80.202.29.148:31704 SENT CONTROL [UNDEF]: \
’PUSH_REPLY,route 10.8.0.1,ping 10,ping-restart 120,ifconfig 10.8.0.6 \
10.8.0.5’ (status=1)

88

Appendix E

DSA certificate generation class

// SPEKE/CMP on-the-fly SSO implementation
//
// CA and server DSA certificate generator
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.OutputStream;

import java.math.BigInteger;

import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.SecureRandom;
import java.security.Security;
import java.security.Signature;

import java.security.spec.DSAPrivateKeySpec;

import java.util.Date;
import java.util.Vector;

import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DERBitString;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.DERSequence;

89

import org.bouncycastle.asn1.util.ASN1Dump;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.asn1.x509.TBSCertificateStructure;
import org.bouncycastle.asn1.x509.Time;
import org.bouncycastle.asn1.x509.V3TBSCertificateGenerator;
import org.bouncycastle.asn1.x509.X509CertificateStructure;
import org.bouncycastle.asn1.x509.X509Name;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.generators.DSAKeyPairGenerator;
import org.bouncycastle.crypto.generators.DSAParametersGenerator;
import org.bouncycastle.crypto.params.DSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.signers.DSASigner;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.provider.JDKDSAPublicKey;
import org.bouncycastle.jce.provider.X509CertificateObject;

import org.bouncycastle.openssl.PEMWriter;

public class gencert
{
static SecureRandom secureRandom;

// bit length of modulus for digital signatures
static final int strength = 1024;
// certainty for prime generation,
// 2^-certainty probability of error
static final int certainty = 100;
// How many milliseconds a certificate should be valid
// This will be checked on the server side as well
// 1 hour = 3600 seconds
static final long validityPeriod = 3600000;
// 1 year
static final long CAvalidityPeriod = 31536000000l;

static final X509Name issuerX509Name =
new X509Name("dc=no,dc=ntnu,cn=ca");

static final boolean debug = true;

public static void main(String[] args)
{
try {
Security.addProvider(new BouncyCastleProvider());

90

secureRandom = new SecureRandom();
// START server generation
X509CertificateStructure caCert =
X509CertificateStructure.getInstance(
new ASN1InputStream(
new FileInputStream("ca_1024.crt")

).readObject()
);

DERInteger caDERX =
DERInteger.getInstance(
new ASN1InputStream(
new FileInputStream("ca_1024.key")

).readObject()
);

DERInteger caDERY =
(DERInteger)
caCert.getSubjectPublicKeyInfo().getPublicKey();

DERSequence caDERSequence =
(DERSequence)
caCert.getSignatureAlgorithm().getParameters();

DERInteger caDERP =
(DERInteger)caDERSequence.getObjectAt(0);

DERInteger caDERQ =
(DERInteger)caDERSequence.getObjectAt(1);

DERInteger caDERG =
(DERInteger)caDERSequence.getObjectAt(2);

DSAPublicKeyParameters caPublicKey =
new DSAPublicKeyParameters(
caDERY.getValue(),
new DSAParameters(
caDERP.getValue(),
caDERQ.getValue(),
caDERG.getValue()

)
);

DSAPrivateKeyParameters caPrivateKey =
new DSAPrivateKeyParameters(
caDERX.getValue(),
new DSAParameters(
caDERP.getValue(),
caDERQ.getValue(),
caDERG.getValue()

)
);

// END server generation
if(debug) {System.out.print("Generating key pair...");}

91

DSAParametersGenerator dpg = new DSAParametersGenerator();
dpg.init(strength , certainty , secureRandom);
DSAKeyGenerationParameters kgp =
new DSAKeyGenerationParameters(
secureRandom,
dpg.generateParameters()

);
DSAKeyPairGenerator keyGen = new DSAKeyPairGenerator();
keyGen.init(kgp);
AsymmetricCipherKeyPair keyPair =
keyGen.generateKeyPair();

DSAPrivateKeyParameters privateKey =
(DSAPrivateKeyParameters)keyPair.getPrivate();

DSAPublicKeyParameters publicKey =
(DSAPublicKeyParameters)keyPair.getPublic();

DERInteger[] dssPublicParameters =
{new DERInteger(publicKey.getParameters().getP()),
new DERInteger(publicKey.getParameters().getQ()),
new DERInteger(publicKey.getParameters().getG())};

// DSA public key
AlgorithmIdentifier myAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.10040.4.1"),
new DERSequence(dssPublicParameters)

);

SubjectPublicKeyInfo mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(
myAlgorithmIdentifier,
new DERInteger(publicKey.getY())

);

if(debug) {System.out.println("OK");}

Date now = new Date();
V3TBSCertificateGenerator certGenerator =
new V3TBSCertificateGenerator();

certGenerator.setIssuer(issuerX509Name);
certGenerator.setEndDate(
new Time(new Date(now.getTime() + CAvalidityPeriod))

);
certGenerator.setStartDate(new Time(now));
certGenerator.setSerialNumber(new DERInteger(0));

DERInteger[] caDssPublicParameters =
{new DERInteger(caPublicKey.getParameters().getP()),
new DERInteger(caPublicKey.getParameters().getQ()),
new DERInteger(caPublicKey.getParameters().getG())};

92

//DSAWITHSHA1
myAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.10040.4.3"),
new DERSequence(caDssPublicParameters)

);

certGenerator.setSignature(myAlgorithmIdentifier);
certGenerator.setSubject(
new X509Name("dc=no,dc=ntnu,cn=server")

);
certGenerator.setSubjectPublicKeyInfo(
mySubjectPublicKeyInfo

);
TBSCertificateStructure myTBSCert =
certGenerator.generateTBSCertificate();

ASN1EncodableVector myASN1EncodableVector =
new ASN1EncodableVector();

SHA1Digest mySHA1Digest = new SHA1Digest();
byte[] digestIn = myTBSCert.getEncoded();
mySHA1Digest.update(digestIn , 0 , digestIn.length);
byte[] digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);

DSASigner myDSASigner = new DSASigner();
myDSASigner.init(true , caPrivateKey);
BigInteger[] mySignature = new BigInteger[2];
mySignature = myDSASigner.generateSignature(digestOut);
DERInteger[] myDERIntegerArray =
{new DERInteger(mySignature[0]),
new DERInteger(mySignature[1]) };

DERSequence myDERSignature =
new DERSequence(myDERIntegerArray);

myASN1EncodableVector.add(myTBSCert);
myASN1EncodableVector.add(myAlgorithmIdentifier);
myASN1EncodableVector.add(
new DERBitString(myDERSignature)

);

X509CertificateStructure CACert =
new X509CertificateStructure(
new DERSequence(myASN1EncodableVector)

);

DEROutputStream certFile =
new DEROutputStream(new FileOutputStream("server.crt"));

93

certFile.writeObject(CACert);
certFile.close();

PEMWriter pemCertFile =
new PEMWriter(new FileWriter("server_crt.pem"));

pemCertFile.writeObject(new X509CertificateObject(CACert));
pemCertFile.close();

DEROutputStream keyFile =
new DEROutputStream(new FileOutputStream("server.key"));

keyFile.writeObject(new DERInteger(privateKey.getX()));
keyFile.close();

KeyFactory myKeyFactory =
KeyFactory.getInstance("DSA");

PrivateKey myDSAPrivateKey =
myKeyFactory.generatePrivate(
new DSAPrivateKeySpec(
privateKey.getX(),
privateKey.getParameters().getP(),
privateKey.getParameters().getQ(),
privateKey.getParameters().getG()

)
);

PEMWriter pemKeyFile =
new PEMWriter(new FileWriter("server_key.pem"));

pemKeyFile.writeObject(myDSAPrivateKey);
pemKeyFile.close();

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

}// end class gencert

94

Appendix F

RSA certificate generation class

// SPEKE/CMP on-the-fly SSO implementation
//
// CA and server RSA certificate generator
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.OutputStream;

import java.math.BigInteger;

import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.SecureRandom;
import java.security.Security;
import java.security.Signature;

import java.security.spec.RSAPrivateCrtKeySpec;

import java.util.Date;
import java.util.Vector;

import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DERBitString;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DERNull;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.DERSequence;

95

import org.bouncycastle.asn1.util.ASN1Dump;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.asn1.x509.TBSCertificateStructure;
import org.bouncycastle.asn1.x509.Time;
import org.bouncycastle.asn1.x509.V3TBSCertificateGenerator;
import org.bouncycastle.asn1.x509.X509CertificateStructure;
import org.bouncycastle.asn1.x509.X509Name;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.engines.RSAEngine;
import org.bouncycastle.crypto.generators.RSAKeyPairGenerator;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.crypto.signers.PSSSigner;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.provider.X509CertificateObject;

import org.bouncycastle.openssl.PEMWriter;

public class gencert_rsa
{
static SecureRandom secureRandom;

// bit length of modulus for digital signatures
static final int strength = 768;
// certainty for prime generation,
// 2^-certainty probability of error
static final int certainty = 100;
// How many milliseconds a certificate should be valid
// This will be checked on the server side as well
// 1 hour = 3600 seconds
static final long validityPeriod = 3600000;
// 1 year
static final long CAvalidityPeriod = 31536000000l;

static final X509Name issuerX509Name =
new X509Name("dc=no,dc=ntnu,cn=ca");

static final boolean debug = true;

public static void main(String[] args)
{
try {
Security.addProvider(new BouncyCastleProvider());
secureRandom = new SecureRandom();

96

if(debug) {System.out.print("Generating key pair...");}
RSAKeyGenerationParameters rkgp =
new RSAKeyGenerationParameters(
new BigInteger("65537"),
secureRandom,
strength,
certainty

);
RSAKeyPairGenerator rpg = new RSAKeyPairGenerator();
rpg.init(rkgp);
AsymmetricCipherKeyPair RSAKeyPair =
rpg.generateKeyPair();

RSAPrivateCrtKeyParameters privateKeyRSA =
(RSAPrivateCrtKeyParameters)RSAKeyPair.getPrivate();

RSAKeyParameters publicKeyRSA =
(RSAKeyParameters)RSAKeyPair.getPublic();

DERInteger[] rsaPublicParameters =
{new DERInteger(publicKeyRSA.getModulus()),
new DERInteger(publicKeyRSA.getExponent())};

DERSequence myDERSequence =
new DERSequence(rsaPublicParameters);

System.out.println(strength + " bit n: " +
publicKeyRSA.getModulus().toString());

System.out.println("Exponent e: " +
publicKeyRSA.getExponent().toString());

// rsaEncryption
AlgorithmIdentifier myAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.113549.1.1.1"),
new DERNull()

);
SubjectPublicKeyInfo mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(
myAlgorithmIdentifier,
myDERSequence

);
if(debug) {System.out.println("OK");}

Date now = new Date();
V3TBSCertificateGenerator certGenerator =
new V3TBSCertificateGenerator();

certGenerator.setIssuer(issuerX509Name);
certGenerator.setEndDate(
new Time(new Date(now.getTime() + CAvalidityPeriod)));

certGenerator.setStartDate(new Time(now));
certGenerator.setSerialNumber(new DERInteger(0));

97

//sha-1WithRSAEncryption
myAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.113549.1.1.5"),
new DERNull()

);

certGenerator.setSignature(myAlgorithmIdentifier);
certGenerator.setSubject(
new X509Name("dc=no,dc=ntnu,cn=ca"));

certGenerator.setSubjectPublicKeyInfo(
mySubjectPublicKeyInfo);

TBSCertificateStructure myTBSCert =
certGenerator.generateTBSCertificate();

ASN1EncodableVector myASN1EncodableVector =
new ASN1EncodableVector();

// 64 = length of salt in number of bytes
// Usually number of bytes in hash function.
// or SHA-1: 160 / 8 = 20
PSSSigner myPSSSigner =
new PSSSigner(new RSAEngine(), new SHA1Digest(), 20);

myPSSSigner.init(true, privateKeyRSA);
myPSSSigner.update(
myTBSCert.getEncoded(),
0,
myTBSCert.getEncoded().length

);
byte[] myRSASignature = myPSSSigner.generateSignature();

myASN1EncodableVector.add(myTBSCert);
myASN1EncodableVector.add(myAlgorithmIdentifier);
myASN1EncodableVector.add(
new DERBitString(myRSASignature));

X509CertificateStructure CACert =
new X509CertificateStructure(
new DERSequence(myASN1EncodableVector)

);

DEROutputStream certFile =
new DEROutputStream(
new FileOutputStream("ca_rsa_"+strength+".crt")

);
certFile.writeObject(CACert);
certFile.close();

PEMWriter pemCertFile =
new PEMWriter(

98

new FileWriter("ca_rsa_"+strength+"_crt.pem")
);

pemCertFile.writeObject(
new X509CertificateObject(CACert));

pemCertFile.close();

KeyFactory myKeyFactory = KeyFactory.getInstance("RSA");
PrivateKey myRSAPrivateKey =
myKeyFactory.generatePrivate(
new RSAPrivateCrtKeySpec(
privateKeyRSA.getModulus(),
privateKeyRSA.getPublicExponent(),
privateKeyRSA.getExponent(),
privateKeyRSA.getP(),
privateKeyRSA.getQ(),
privateKeyRSA.getDP(),
privateKeyRSA.getDQ(),
privateKeyRSA.getQInv()

)
);

PEMWriter pemKeyFile =
new PEMWriter(
new FileWriter("ca_rsa_"+strength+"_key.pem")

);
pemKeyFile.writeObject(myRSAPrivateKey);
pemKeyFile.close();

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

}// end class gencert_rsa

99

Appendix G

SPEKE modulus generation
class

// SPEKE/CMP on-the-fly SSO implementation
//
// Class that generates safe primes that can
// be used as SPEKE moduli
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import java.math.BigInteger;

import java.security.SecureRandom;
import java.security.Security;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class genmoduli
{
static SecureRandom secureRandom;

static BigInteger ONE = BigInteger.valueOf(1);
static BigInteger TWO = BigInteger.valueOf(2);

static final int certainty = 100;

public static void main(String[] args)
{
try {
Security.addProvider(new BouncyCastleProvider());
secureRandom = new SecureRandom();

// We want to create a safe prime p, which means that

100

// p = 2q + 1 for some prime q
int mLength =
(args.length > 0 ? Integer.parseInt(args[0]) : 768);

BigInteger p, q;

while (true) {

q = BigInteger.probablePrime(mLength - 1,
secureRandom);

System.out.print(".");
p = q.multiply(TWO).add(ONE);
if (p.isProbablePrime(certainty)) {
System.out.println(
mLength + " bit modulus: " + p.toString()

);
break;

}
} // end while loop generating q and p

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

}// end class genmoduli

101

Appendix H

AS/CA implementation

// SPEKE/CMP SSO implementation
//
// This class implements the AS/CA
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import com.novosec.pkix.asn1.cmp.*;
import com.novosec.pkix.asn1.crmf.*;

import java.io.FileInputStream;
import java.io.FileReader;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;

import java.math.BigInteger;

import java.util.Properties;

import java.security.AlgorithmParameters;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;
import java.security.Signature;

import java.util.Date;
import java.util.Properties;
import java.util.Vector;

102

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

import javax.servlet.*;
import javax.servlet.http.*;

import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DERBitString;
import org.bouncycastle.asn1.DERGeneralizedTime;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DEROctetString;
import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.util.ASN1Dump;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.asn1.x509.GeneralName;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.asn1.x509.TBSCertificateStructure;
import org.bouncycastle.asn1.x509.Time;
import org.bouncycastle.asn1.x509.V3TBSCertificateGenerator;
import org.bouncycastle.asn1.x509.X509CertificateStructure;
import org.bouncycastle.asn1.x509.X509Name;

import org.bouncycastle.crypto.CryptoException;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.engines.AESFastEngine;
import org.bouncycastle.crypto.engines.RSAEngine;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.signers.DSASigner;
import org.bouncycastle.crypto.signers.PSSSigner;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.provider.JDKDSAPublicKey;
import org.bouncycastle.jce.provider.JCERSAPrivateCrtKey;
import org.bouncycastle.jce.provider.JCERSAPrivateKey;
import org.bouncycastle.jce.provider.RSAUtil;
import org.bouncycastle.jce.provider.X509CertificateObject;

import org.bouncycastle.openssl.PEMReader;

public class server extends HttpServlet
{

103

//static final String securityProvider = "BC";
static SecureRandom secureRandom;

static final String propertiesFile = "ca.properties";

// certainty for prime generation, 2^(-certainty)
// probability of error
static final int certainty = 100;
static final X509Name issuerX509Name =
new X509Name("dc=no,dc=ntnu,cn=ca");

static boolean debug = false;
static boolean timing = false;
static boolean rsa = false;
static BigInteger ZERO = BigInteger.valueOf(0);
static BigInteger ONE = BigInteger.valueOf(1);
static BigInteger TWO = BigInteger.valueOf(2);

// H(P) used for SPEKE
static BigInteger P = null;

// modulus for SPEKE
static BigInteger p;

static BigInteger serialNumber = new BigInteger("1");

// User name - verifier mapping
static Properties passwordTable = new Properties();

String userName = "";
Date startTime, stopTime;
DSASigner signDSASigner = new DSASigner();
Provider bcProvider = new BouncyCastleProvider();
static DERInteger caDERX, caDERY, caDERP, caDERQ, caDERG;
static DSAPublicKeyParameters caPublicKey;
static DSAPrivateKeyParameters caPrivateKey;
static X509CertificateStructure caCert;
static int modulusLength,randlength,strength;
static long validityPeriod,CAvalidityPeriod;
static String modulus,certfile,keyfile,CAcertfile,domain;
static RSAPrivateCrtKeyParameters privateKeyRSA = null;
static AlgorithmIdentifier caSigAlgorithmIdentifier;

public void init(ServletConfig config) throws ServletException
{
try{

// Start loading configuration file
Properties myProperties = new Properties();
myProperties.load(new FileInputStream(propertiesFile));

104

// the modulus p used for SPEKE
modulusLength = Integer.parseInt(
myProperties.getProperty("modulusLength"));

// bit length of random parameters (A , B) in DH
randlength = Integer.parseInt(
myProperties.getProperty("randLength"));

// bit length of modulus for digital signatures
strength = Integer.parseInt(
myProperties.getProperty("strength"));

// How many milliseconds a certificate should be valid
validityPeriod = Long.parseLong(
myProperties.getProperty("validityPeriod"));

// 1 year
CAvalidityPeriod = Long.parseLong(
myProperties.getProperty("CAvalidityPeriod"));

domain = myProperties.getProperty("domain");
String debugString = myProperties.getProperty("debug");
String timingString = myProperties.getProperty("timing");
String rsaString = myProperties.getProperty("rsa");

// SPEKE modulus
if (modulusLength == 2048) {
modulus = myProperties.getProperty("2048modulus");

}
else if (modulusLength == 1024) {
modulus = myProperties.getProperty("1024modulus");

}
else {
modulus = myProperties.getProperty("768modulus");

}
p = new BigInteger(modulus);

if (debugString.equalsIgnoreCase("true")) {
debug = true;

}
if (timingString.equalsIgnoreCase("true")) {
timing = true;

}

if (rsaString.equalsIgnoreCase("true")) {
// CA will use RSA for digital signatures
rsa = true;

}

// Done loading configuration file

Security.addProvider(bcProvider);
secureRandom = new SecureRandom();

105

if(rsa){
// CA uses RSA
certfile = "ca_rsa_" + strength + ".crt";
keyfile = "ca_rsa_" + strength + "_key.pem";
CAcertfile = "ca_rsa_" + strength + ".crt";
// Load private/public key pair
PEMReader myPEMReader =
new PEMReader(new FileReader(keyfile));

KeyPair keyPairRSA =
(KeyPair)myPEMReader.readObject();

privateKeyRSA =
(RSAPrivateCrtKeyParameters)
RSAUtil.generatePrivateKeyParameter(
(JCERSAPrivateKey)keyPairRSA.getPrivate());

caCert = X509CertificateStructure.getInstance(
new ASN1InputStream(
new FileInputStream(certfile)).readObject());

}
else{
// CA uses DSA
certfile = "ca_" + strength + ".crt";
keyfile = "ca_" + strength + ".key";
CAcertfile = "ca_" + strength + ".crt";
// Load private/public key pair
caCert = X509CertificateStructure.getInstance(
new ASN1InputStream(
new FileInputStream(certfile)).readObject());

caDERX = DERInteger.getInstance(
new ASN1InputStream(
new FileInputStream(keyfile)).readObject());

caDERY = (DERInteger)caCert.getSubjectPublicKeyInfo().
getPublicKey();

DERSequence caDERSequence =
(DERSequence)caCert.getSignatureAlgorithm().
getParameters();

caDERP = (DERInteger)caDERSequence.getObjectAt(0);
caDERQ = (DERInteger)caDERSequence.getObjectAt(1);
caDERG = (DERInteger)caDERSequence.getObjectAt(2);

caPublicKey = new DSAPublicKeyParameters(
caDERY.getValue(),
new DSAParameters(caDERP.getValue(),

caDERQ.getValue(),
caDERG.getValue()));

caPrivateKey = new DSAPrivateKeyParameters(
caDERX.getValue(),
new DSAParameters(caDERP.getValue(),

106

caDERQ.getValue(),
caDERG.getValue()));

signDSASigner.init(true , caPrivateKey);
}
caSigAlgorithmIdentifier = caCert.getSignatureAlgorithm();
// password is SHA-1("test123")
passwordTable.setProperty("eian" ,
"653878565946713713149629104275478104571867727804");

}
catch (Exception e) {
e.printStackTrace();

}
}// end init()

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

if (request.getContentType() != null &&
request.getContentType().equals("application/pkixcmp"))

{
try{

if(debug) {System.out.println(
"CONTENT-TYPE application/pkixcmp");}

// true if this is a certificate renewal request
// or token-based, false otherwise
boolean renew = false;
DSASigner myDSASigner = new DSASigner();
PSSSigner myRSASigner =
new PSSSigner(new RSAEngine() , new SHA1Digest() , 20);

Date timeNow;
PKIMessage myPKIMessage =
PKIMessage.getInstance(
new ASN1InputStream(
request.getInputStream()).readObject());

// See if message has message protection
DERBitString verDERBitString =
myPKIMessage.getProtection();

if(myPKIMessage.getProtection() != null) {
// Message protection found, client authenticates
// using digital signature
renew = true;
X509CertificateStructure oldClientCert =
myPKIMessage.getExtraCert(0);

107

// Verify message protection (digital signature)

if(timing) {startTime = new Date();}

if(checkSignature(myRSASigner,
myDSASigner,
oldClientCert,
myPKIMessage.getProtection().getBytes(),
myPKIMessage.getProtectedBytes(),
myPKIMessage.getHeader().getProtectionAlg()))

{
if(debug) {System.out.println(
"Client signature verified!");}

}
else {
if(debug) {System.out.println(
"Client signature verification FAILED!");}

throw new Exception("Message protection invalid.");
}
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"Verification of client signature took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

// Now check the CA signature on the client certificate
if(timing) {startTime = new Date();}

if(checkSignature(myRSASigner,
myDSASigner,
caCert,
oldClientCert.getSignature().getBytes(),
oldClientCert.getTBSCertificate().getEncoded(),
oldClientCert.getSignatureAlgorithm()))

{
if(debug) {System.out.println(
"CA signature verified!");}

}
else {
if(debug) {System.out.println(
"CA signature verification FAILED!");}

throw new Exception(
"CA signature on certificate invalid.");

}
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"Verification of CA signature took " +
(stopTime.getTime() - startTime.getTime()) +

108

" milliseconds.");}

// Must check that the certificate and
// template have the same subject
// and that the certificate has not expired

// Check that the subject is the same for
// cert and template
X509Name oldX509Name = oldClientCert.getSubject();
if(!oldX509Name.toString().equals(
myPKIMessage.getBody().getCr().getCertReqMsg(0).
getCertReq().getCertTemplate().getSubject().
toString()))

{
throw new Exception(
"Client is trying to renew a certificate with a " +
"different user name!");

}
timeNow = new Date();
// Check that the certificate has not expired
if (timeNow.after(
oldClientCert.getEndDate().getDate()))

{
throw new Exception(
"Client certificate has expired!");

}

// See if the certificate is not yet valid
if (timeNow.before(
oldClientCert.getStartDate().getDate()))

{
throw new Exception(
"Client certificate is not yet valid!");

}
}

// Get the certificate template
CertTemplate myCertTemplate =
myPKIMessage.getBody().getCr().getCertReqMsg(0).
getCertReq().getCertTemplate();

SubjectPublicKeyInfo mySubjectPublicKeyInfo =
myCertTemplate.getPublicKey();

X509Name myX509Name = myCertTemplate.getSubject();
if(debug) {System.out.println(
"Subject name: " + myX509Name.toString());}

Vector oids = myX509Name.getOIDs();
Vector oidValues = myX509Name.getValues();
// Get the user name
// Lame check, should check domain as well

109

if(debug) {System.out.println(
"OID: " + oids.lastElement().toString());}

if(debug) {System.out.println("OIDValue: " +
oidValues.lastElement().toString());}

// Lookup user name, find verifier H(P)
if (oids.lastElement().toString().equalsIgnoreCase(
"0.9.2342.19200300.100.1.1"))

{
userName = oidValues.lastElement().toString();
P = new BigInteger(passwordTable.getProperty(
userName));

}
if(debug) {System.out.println("User name: " + userName);}
if(debug) {System.out.println(
"Verifier: " + P.toString());}

// Create CertResponse
// PKIStatusInfo = 1 means that request is granted,
// but the certificate template was modified
CertResponse myCertResponse =
new CertResponse(
myPKIMessage.getBody().getCr().getCertReqMsg(0).
getCertReq().getCertReqId(),
new PKIStatusInfo(new DERInteger(1)));

// Used to transfer the encrypted CA root certificate
CertResponse CACertResponse =
new CertResponse(
myPKIMessage.getBody().getCr().getCertReqMsg(0).
getCertReq().getCertReqId(),
new PKIStatusInfo(new DERInteger(1)));

// Create signed and (possibly) encrypted certificate
// and add to response
Date now = new Date();
V3TBSCertificateGenerator certGenerator =
new V3TBSCertificateGenerator();

certGenerator.setIssuer(issuerX509Name);
certGenerator.setEndDate(
new Time(new Date(now.getTime() + validityPeriod)));

certGenerator.setStartDate(new Time(now));
certGenerator.setSerialNumber(
new DERInteger(serialNumber));

// Just increment the serial number by one.
// Not very clever, but this is an experimental
// implementation
serialNumber.add(ONE);

certGenerator.setSignature(

110

caSigAlgorithmIdentifier);
certGenerator.setSubject(myX509Name);
certGenerator.setSubjectPublicKeyInfo(
mySubjectPublicKeyInfo);

TBSCertificateStructure myTBSCert =
certGenerator.generateTBSCertificate();

ASN1EncodableVector myASN1EncodableVector =
new ASN1EncodableVector();

myASN1EncodableVector.add(myTBSCert);
myASN1EncodableVector.add(caSigAlgorithmIdentifier);
if(timing) {startTime = new Date();}
if(rsa){
myASN1EncodableVector.add(
doRSASignature(myRSASigner,

privateKeyRSA,
myTBSCert.getEncoded()));

}
else {
myASN1EncodableVector.add(
doDSASignature(caPrivateKey,

myTBSCert.getEncoded()));
}
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"Signing client certificate took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

X509CertificateStructure myX509Cert =
new X509CertificateStructure(
new DERSequence(myASN1EncodableVector));

// Set sender and recipient
PKIHeader myPKIHeader =
new PKIHeader(new DERInteger(1),

new GeneralName(
new X509Name("dc=no,dc=ntnu,cn=ca")),

new GeneralName(
new X509Name(domain+",cn="+userName)));

if(renew){
myCertResponse.setCertifiedKeyPair(
new CertifiedKeyPair(
new CertOrEncCert(myX509Cert , 0)));

}
else{
// Client requested that the certificate should be

111

// encrypted with the SPEKE session key

// Generate random exponent, compute shared session key
// Compute SPEKE key, encrypt certificates

// Generate random value RB
if(timing) {startTime = new Date();}
BigInteger RB =
new BigInteger(randlength , secureRandom);

if(debug) {System.out.println(
"RB = " + RB.toString());}

if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"Generation of RB took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

// Compute SPEKE verifier H(password)^{2*B}

if(timing) {startTime = new Date();}
BigInteger ha = new BigInteger(
myPKIMessage.getHeader().getSenderKID().getOctets());

// SPEKE constraint
if (ha.compareTo(ZERO) == 0)
{throw new Exception("g^R_A is 0, exiting.");}

if(debug) {System.out.println(
"H(P)^(2RA) = " + ha.toString());}

BigInteger hb = P.modPow(RB.multiply(TWO) , p);
if(debug) {System.out.println(
"H(P)^(2RB) = " + hb.toString());}

BigInteger k = ha.modPow(RB.multiply(TWO) , p);
if(debug) {System.out.println(
"H(P)^(4RA*RB) = " + k.toString());}

// SPEKE constraint
if (k.compareTo(ONE) == 0)
{throw new Exception("K is 1, exiting.");}

// Hash the key to provide forward secrecy
SHA1Digest keySHA1Digest = new SHA1Digest();
keySHA1Digest.update(
k.toByteArray() , 0 , k.toByteArray().length);

byte[] K_S = new byte[keySHA1Digest.getDigestSize()];
keySHA1Digest.doFinal(K_S , 0);

if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"SPEKE key calculation took " +
(stopTime.getTime() - startTime.getTime()) +

112

" milliseconds.");}

if(timing) {startTime = new Date();}
// 16 bytes = 128 bit AES key
SecretKeySpec myAESKeySpec =
new SecretKeySpec(K_S , 0 , 16 , "AES");

// Moving this one to init() leads to
// java.lang.IllegalStateException:
// Cipher not initialized
// under high load
Cipher myCipher =
Cipher.getInstance(
"AES/CBC/PKCS7Padding" , bcProvider);

myCipher.init(Cipher.ENCRYPT_MODE,
myAESKeySpec,
secureRandom);

byte[] myAESIV = myCipher.getIV();

EncryptedValue myEncryptedCert =
new EncryptedValue(
new DERBitString(
myCipher.doFinal(myX509Cert.getEncoded())));

// Store the Initialization Vector for AES
myEncryptedCert.setEncSymmKey(
new DERBitString(myAESIV));

if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"AES encryption of client certificate took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

if(timing) {startTime = new Date();}
myCipher.init(Cipher.ENCRYPT_MODE,

myAESKeySpec,
secureRandom);

myAESIV = myCipher.getIV();

EncryptedValue CAEncryptedCert =
new EncryptedValue(
new DERBitString(
myCipher.doFinal(caCert.getEncoded())));

CAEncryptedCert.setEncSymmKey(
new DERBitString(myAESIV));

if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"AES encryption of CA certificate took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

113

// Change 1 to 0 for unencrypted cert
myCertResponse.setCertifiedKeyPair(new
CertifiedKeyPair(
new CertOrEncCert(myEncryptedCert , 1)));

CACertResponse.setCertifiedKeyPair(
new CertifiedKeyPair(
new CertOrEncCert(CAEncryptedCert , 1)));

// Store the SPEKE public key
myPKIHeader.setSenderKID(
new DEROctetString(hb.toByteArray()));

myPKIHeader.setRecipKID(
new DEROctetString(ha.toByteArray()));

}

BigInteger myNonce =
new BigInteger(128 , secureRandom);

myPKIHeader.setMessageTime(
new DERGeneralizedTime(new Date()));

myPKIHeader.setSenderNonce(
new DEROctetString(myNonce.toByteArray()));

myPKIHeader.setRecipNonce(
myPKIMessage.getHeader().getSenderNonce());

CertRepMessage myCertRepMessage =
new CertRepMessage(myCertResponse);

if(!renew){
// Initial authentication, include encrypted
// CA root certificate
myCertRepMessage.addResponse(CACertResponse);

}
PKIMessage repPKIMessage =
new PKIMessage(myPKIHeader,

new PKIBody(myCertRepMessage , 3));

// Write response
DEROutputStream sos =
new DEROutputStream(response.getOutputStream());

response.setContentType("application/pkixcmp");
sos.writeObject(repPKIMessage);
sos.close();

}
catch (Exception e) {
e.printStackTrace();

}
}
else {

114

PrintWriter out = response.getWriter();
out.println("Move along, nothing to see here.");
out.close();

}
}

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{
doGet(request, response);

}

private DERBitString doDSASignature(
DSAPrivateKeyParameters privateKey,

byte[] message)
{
// Run message through SHA-1
SHA1Digest mySHA1Digest = new SHA1Digest();
mySHA1Digest.update(message , 0 , message.length);
byte[] digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);

// Sign message digest and return signature
BigInteger[] myRS =
signDSASigner.generateSignature(digestOut);

DERInteger[] myDERIntegerArray =
{new DERInteger(myRS[0]),
new DERInteger(myRS[1])};

return new DERBitString(new DERSequence(myDERIntegerArray));
}

private DERBitString doRSASignature(
PSSSigner myRSASigner,
RSAPrivateCrtKeyParameters privateKeyRSA,
byte[] message)
throws CryptoException

{
myRSASigner.init(true, privateKeyRSA);
myRSASigner.update(message , 0 , message.length);

return new DERBitString(myRSASigner.generateSignature());
}

private boolean checkSignature(
PSSSigner myRSASigner,
DSASigner myDSASigner,
X509CertificateStructure inCert,

115

byte[] sig,
byte[] message,
AlgorithmIdentifier sigAlgId)
throws CryptoException , IOException

{

SubjectPublicKeyInfo clientSubjectPublicKeyInfo =
inCert.getSubjectPublicKeyInfo();

AlgorithmIdentifier pubKeyAlgId =
clientSubjectPublicKeyInfo.getAlgorithmId();

// OID 1.2.840.113549.1.1.5 = sha-1WithRSAEncryption
// OID 1.2.840.113549.1.1.1 = RSAEncryption (RSA public key)
if(sigAlgId.getObjectId().getId().equals(
"1.2.840.113549.1.1.5"))

{
DERSequence RSADERSequence =
(DERSequence)clientSubjectPublicKeyInfo.getPublicKey();

myRSASigner.init(
false,
new RSAKeyParameters(
false,
((DERInteger)RSADERSequence.getObjectAt(0)).getValue(),
((DERInteger)RSADERSequence.getObjectAt(1)).getValue()

)
);
myRSASigner.update(message , 0 , message.length);
return myRSASigner.verifySignature(sig);

}
else{
DERSequence sigDERSequence, verDERSequence;
DERInteger sigR, sigS, DERP, DERQ, DERR;
ASN1InputStream ais = new ASN1InputStream(sig);
sigDERSequence = (DERSequence)ais.readObject();
sigR = (DERInteger)sigDERSequence.getObjectAt(0);
sigS = (DERInteger)sigDERSequence.getObjectAt(1);
// this sequence consists of 3 Integers: p, q and g.
verDERSequence = (DERSequence)sigAlgId.getParameters();
DERP = (DERInteger)verDERSequence.getObjectAt(0);
DERQ = (DERInteger)verDERSequence.getObjectAt(1);
DERR = (DERInteger)verDERSequence.getObjectAt(2);
DSAPublicKeyParameters publicKey =
new DSAPublicKeyParameters(
((DERInteger)clientSubjectPublicKeyInfo.
getPublicKey()).getValue(),
new DSAParameters(
DERP.getValue(),
DERQ.getValue(),

116

DERR.getValue()
)

);

SHA1Digest mySHA1Digest = new SHA1Digest();
mySHA1Digest.update(message , 0 , message.length);
byte[] digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);
myDSASigner.init(false , publicKey);
return myDSASigner.verifySignature(digestOut,

sigR.getValue(),
sigS.getValue());

}
}// end method checkSignature

}// end class server

117

Appendix I

Client implementation

// SPEKE/CMP on-the-fly SSO implementation
//
// Client implementation
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import com.novosec.pkix.asn1.cmp.*;
import com.novosec.pkix.asn1.crmf.*;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStream;

import java.math.BigInteger;

import java.net.URLConnection;
import java.net.URL;

import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;

import java.security.spec.DSAPrivateKeySpec;
import java.security.spec.RSAPrivateCrtKeySpec;

import java.util.Date;
import java.util.Properties;

import javax.crypto.Cipher;

118

import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DERBitString;
import org.bouncycastle.asn1.DERGeneralizedTime;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DERNull;
import org.bouncycastle.asn1.DERObject;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.DEROctetString;
import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.util.ASN1Dump;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.asn1.x509.GeneralName;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.asn1.x509.Time;
import org.bouncycastle.asn1.x509.X509CertificateStructure;
import org.bouncycastle.asn1.x509.X509Name;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.CryptoException;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.engines.RSAEngine;
import org.bouncycastle.crypto.generators.DSAKeyPairGenerator;
import org.bouncycastle.crypto.generators.DSAParametersGenerator;
import org.bouncycastle.crypto.generators.RSAKeyPairGenerator;
import org.bouncycastle.crypto.params.DSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.crypto.signers.DSASigner;
import org.bouncycastle.crypto.signers.PSSSigner;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.provider.X509CertificateObject;

import org.bouncycastle.openssl.PEMWriter;

class client
{
static SecureRandom secureRandom;

static final String propertiesFile = "client.properties";

119

// certainty for prime generation,
// 2^-certainty probability of error
static final int certainty = 100;

static boolean debug = false;
static boolean timing = false;
static boolean generateDSAParameters = false;
static boolean generateRSAParameters = false;
static boolean renewCertificate = false;
static boolean rsa = false;

static BigInteger ZERO = BigInteger.valueOf(0);
static BigInteger ONE = BigInteger.valueOf(1);
static BigInteger TWO = BigInteger.valueOf(2);

static BigInteger DSAP, DSAQ, DSAG;
static String modulus;

public static void main(String[] args)
{
try {

// Start loading configuration file
Properties myProperties = new Properties();
myProperties.load(new FileInputStream(propertiesFile));
String serverUrl = myProperties.getProperty("serverUrl");
// the p in Z_p used for SPEKE, all calculations
// are performed mod p
int modulusLength =
Integer.parseInt(
myProperties.getProperty("modulusLength"));

// bit length of random parameters (A , B) in SPEKE
int randlength =
Integer.parseInt(myProperties.getProperty("randLength"));

// bit length of modulus for digital signatures
int strength =
Integer.parseInt(myProperties.getProperty("strength"));

String certfile = myProperties.getProperty("certfile");
String keyfile = myProperties.getProperty("keyfile");
String pemcertfile = myProperties.getProperty("pemcertfile");
String pemkeyfile = myProperties.getProperty("pemkeyfile");
String messageFile = myProperties.getProperty("messageFile");
String CAcertfile = myProperties.getProperty("CAcertfile");
String domain = myProperties.getProperty("domain");
String debugString = myProperties.getProperty("debug");
String timingString = myProperties.getProperty("timing");
String rsaString = myProperties.getProperty("rsa");
String generateDSAParametersString =

120

myProperties.getProperty("generateDSAParameters");
String generateRSAParametersString =
myProperties.getProperty("generateRSAParameters");

String renewCertificateString =
myProperties.getProperty("renewCertificate");

long renewInterval =
Long.parseLong(myProperties.getProperty("renewInterval"));

int renewTimes =
Integer.parseInt(myProperties.getProperty("renewTimes"));

if (modulusLength == 2048) {
modulus = myProperties.getProperty("2048modulus");

}
else if (modulusLength == 1024) {
modulus = myProperties.getProperty("1024modulus");

}
else {
modulus = myProperties.getProperty("768modulus");

}

// Pre-generated DSA parameters
if (strength == 2048) {
DSAP = new BigInteger(myProperties.getProperty("2048p"));
DSAQ = new BigInteger(myProperties.getProperty("2048q"));
DSAG = new BigInteger(myProperties.getProperty("2048g"));

}
else if (strength == 1024) {
DSAP = new BigInteger(myProperties.getProperty("1024p"));
DSAQ = new BigInteger(myProperties.getProperty("1024q"));
DSAG = new BigInteger(myProperties.getProperty("1024g"));

}
else {
DSAP = new BigInteger(myProperties.getProperty("768p"));
DSAQ = new BigInteger(myProperties.getProperty("768q"));
DSAG = new BigInteger(myProperties.getProperty("768g"));

}
if (debugString.equalsIgnoreCase("true")) {
debug = true;

}
if (timingString.equalsIgnoreCase("true")) {
timing = true;

}
if (generateDSAParametersString.equalsIgnoreCase("true")) {
generateDSAParameters = true;

}
if (generateRSAParametersString.equalsIgnoreCase("true")) {
generateRSAParameters = true;

}
if (renewCertificateString.equalsIgnoreCase("true")) {
renewCertificate = true;

121

}
if (rsaString.equalsIgnoreCase("true")) {
rsa = true;

}
// Done loading configuration file

Date startTime = new Date();
Date stopTime = new Date();;

AlgorithmIdentifier keyAlgorithmIdentifier;
AlgorithmIdentifier sigAlgorithmIdentifier;
SubjectPublicKeyInfo mySubjectPublicKeyInfo;
Provider bcProvider = new BouncyCastleProvider();
Security.addProvider(bcProvider);
secureRandom = new SecureRandom();

String username = (args.length > 0 ? args[0] : "test");
String pwd = (args.length > 1 ? args[1] : "test");
BigInteger p = new BigInteger(modulus);

// run the password through SHA-1
SHA1Digest mySHA1Digest = new SHA1Digest();
byte[] digestIn = pwd.getBytes("US-ASCII");
byte[] digestOut;
BigInteger P;
mySHA1Digest.update(digestIn , 0 , digestIn.length);
digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);
P = new BigInteger(1 , digestOut);
if(debug) {System.out.println("H(P) = " + P.toString());}
if(debug) {System.out.println(
"H(P)^2 = " + P.modPow(TWO , p).toString());}

// Generate key pair pk_A, sk_A

DSAKeyPairGenerator keyGen = new DSAKeyPairGenerator();
DSAKeyGenerationParameters kgp = null;
DSAParametersGenerator dpg = null;
AsymmetricCipherKeyPair keyPair = null;
DSAPrivateKeyParameters privateKey = null;
DSAPublicKeyParameters publicKey = null;
DERInteger[] dssPublicParameters = new DERInteger[3];
RSAKeyGenerationParameters rkgp = null;;
RSAKeyPairGenerator rpg = null;
AsymmetricCipherKeyPair RSAKeyPair = null;
RSAPrivateCrtKeyParameters privateKeyRSA = null;
RSAKeyParameters publicKeyRSA = null;
DERInteger[] rsaPublicParameters = new DERInteger[2];
DERSequence myDERSequence = null;

122

DSASigner myDSASigner = new DSASigner();
// 20 = length of salt. 20 bytes = 160 bits, the
// length of the output from SHA-1
PSSSigner myRSASigner =
new PSSSigner(new RSAEngine() , new SHA1Digest() , 20);

if(rsa) {
// Client will use RSA
if(debug) {System.out.print(
"Generating RSA key pair...");}

if(timing) {startTime = new Date();}
rkgp = new RSAKeyGenerationParameters(
new BigInteger("65537"),
secureRandom,
strength,
certainty) ;

rpg = new RSAKeyPairGenerator();
rpg.init(rkgp);
RSAKeyPair = rpg.generateKeyPair();
if(timing) {stopTime = new Date();}
if(debug) {System.out.println("OK");}
if(timing) {System.out.println(
"RSA key generation took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

privateKeyRSA =
(RSAPrivateCrtKeyParameters)RSAKeyPair.getPrivate();

publicKeyRSA = (RSAKeyParameters)RSAKeyPair.getPublic();
rsaPublicParameters[0] =
new DERInteger(publicKeyRSA.getModulus());

rsaPublicParameters[1] =
new DERInteger(publicKeyRSA.getExponent());

myDERSequence = new DERSequence(rsaPublicParameters);

// rsaEncryption
keyAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.113549.1.1.1"),
new DERNull()

);

// sha-1WithRSAEncryption
sigAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.113549.1.1.5"),
new DERNull()

);
mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(
keyAlgorithmIdentifier,

123

myDERSequence
);

}
else{
// Client will use DSA
if(generateDSAParameters) {
// Generate DSA parameters instead of
// using those in the properties file
// This takes a long time if we are
// using a large modulus
if(debug) {System.out.print(
"Generating DSA parameters...");}

if(timing) {startTime = new Date();}
dpg = new DSAParametersGenerator();
dpg.init(strength , certainty , secureRandom);
kgp = new DSAKeyGenerationParameters(
secureRandom, dpg.generateParameters());

if(timing) {stopTime = new Date();}
if(debug) {System.out.println("OK");}
if(timing) {System.out.println(
"DSA parameter generation took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

if (debug) {System.out.println(
strength + "-bit P: " +
kgp.getParameters().getP().toString());}

if (debug) {System.out.println(
"Q: " + kgp.getParameters().getQ().toString());}

if (debug) {System.out.println(
"G: " + kgp.getParameters().getG().toString());}

}
else {
// Load key generation parameters from file
kgp = new DSAKeyGenerationParameters(
secureRandom , new DSAParameters(DSAP, DSAQ, DSAG));

}
if(debug) {System.out.print(
"Generating DSA key pair...");}

if(timing) {startTime = new Date();}
keyGen.init(kgp);
keyPair = keyGen.generateKeyPair();
if(timing) {stopTime = new Date();}
privateKey =
(DSAPrivateKeyParameters)keyPair.getPrivate();

publicKey =
(DSAPublicKeyParameters)keyPair.getPublic();

if(debug) {System.out.println("OK");}
if(timing) {System.out.println(
"DSA key generation took " +

124

(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

// Include p,q,g as per 7.3.3 in rfc2459.
dssPublicParameters[0] =
new DERInteger(publicKey.getParameters().getP());

dssPublicParameters[1] =
new DERInteger(publicKey.getParameters().getQ());

dssPublicParameters[2] =
new DERInteger(publicKey.getParameters().getG());

// dsa
keyAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.10040.4.1"),
new DERSequence(dssPublicParameters)

);
// dsa-with-sha1
sigAlgorithmIdentifier =
new AlgorithmIdentifier(
new DERObjectIdentifier("1.2.840.10040.4.3"),
new DERSequence(dssPublicParameters)

);
// use publicKey.getY() to retrieve the public key
// as a BigInteger
mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(
keyAlgorithmIdentifier,
new DERInteger(publicKey.getY())

);
}

// Generate random value RA

BigInteger RA = new BigInteger(randlength , secureRandom);

// Compute SPEKE verifier H(password)^{2*A}

BigInteger ha = P.modPow(RA.multiply(TWO) , p);
if(debug) {System.out.println(
"H(P)^(2RA) = " + ha.toString());}

// Construct CertTemplate
X509Name myX509Name =
new X509Name(domain+",uid="+username);

CertTemplate myCertTemplate = new CertTemplate();
// version=2 -> X.509v3
myCertTemplate.setVersion(new DERInteger(2));
myCertTemplate.setSubject(myX509Name);
myCertTemplate.setPublicKey(mySubjectPublicKeyInfo);

125

CertRequest myCertRequest =
new CertRequest(
new DERInteger(new BigInteger(128 , secureRandom)),
myCertTemplate

);

// SPEKE public key

// Construct POP
// IMPORTANT: we use POP for authentication, using SPEKE.
// The certificate will be encrypted with the key
// derived from the SPEKE

// POPOPrivKey(DERInteger(0), 1)
// 1 = subsequentMessage, 0 = encrCert
POPOPrivKey myPOPOPrivKey =
new POPOPrivKey(new DERInteger(0) , 1);

// 2 = keyEncipherment
ProofOfPossession myProofOfPossession =
new ProofOfPossession(myPOPOPrivKey , 2);

// Construct CertReqMessage

CertReqMsg myCertReqMsg = new CertReqMsg(myCertRequest);
myCertReqMsg.setPop(myProofOfPossession);

// Add CertReqMessage to CertReqMessages

CertReqMessages myCertReqMessages =
new CertReqMessages(myCertReqMsg);

// Construct PKIHeader (with SPEKE parameters)

BigInteger myNonce = new BigInteger(128 , secureRandom);
PKIHeader myPKIHeader =
new PKIHeader(
new DERInteger(1),
new GeneralName(myX509Name),
new GeneralName(new X509Name("dc=no,dc=ntnu,cn=ca"))

);
// We use SenderKID to store the SPEKE public key
myPKIHeader.setSenderKID(
new DEROctetString(ha.toByteArray()));

myPKIHeader.setMessageTime(
new DERGeneralizedTime(new Date()));

myPKIHeader.setSenderNonce(
new DEROctetString(myNonce.toByteArray()));

126

// Construct PKIMessage
// 2 = Certification Request
PKIBody myPKIBody = new PKIBody(myCertReqMessages, 2);
PKIMessage myPKIMessage =
new PKIMessage(myPKIHeader, myPKIBody);

// Write the message to file, to enable stress test
DEROutputStream mFile =
new DEROutputStream(new FileOutputStream(messageFile));

mFile.writeObject(myPKIMessage);
mFile.close();

URL serverURL = new URL(serverUrl);
URLConnection serverConnection =
serverURL.openConnection();

serverConnection.setRequestProperty(
"Content-Type", "application/pkixcmp");

serverConnection.setUseCaches(false);
serverConnection.setDoOutput(true);
serverConnection.setDoInput(true);
serverConnection.connect();

// Send PKIMessage to server, receive CertRep or Error
DEROutputStream dRequestData =
new DEROutputStream(serverConnection.getOutputStream());

dRequestData.writeObject(myPKIMessage);
dRequestData.close();

myPKIMessage =
PKIMessage.getInstance(
new ASN1InputStream(
serverConnection.getInputStream()

).readObject()
);

BigInteger hb =
new BigInteger(
myPKIMessage.getHeader().getSenderKID().getOctets()

);
// SPEKE constraint
if (hb.compareTo(ZERO) == 0)
{throw new Exception("g^R_B is 0, exiting.");}

if(debug) {System.out.println(
"H(P)^(2RB) = " + hb.toString());}

// Compute K, verify that K != 1
BigInteger KA = hb.modPow(RA.multiply(TWO) , p);
if(debug) {System.out.println(

127

"H(P)^(4RA*RB) = " + KA.toString());}
// SPEKE constraint
if (KA.compareTo(ONE) == 0)
{throw new Exception("K is 1, exiting.");}

// K_S, the shared session key, is a hash of K,
// to provide forward secrecy
mySHA1Digest = new SHA1Digest();
mySHA1Digest.update(KA.toByteArray(),

0,
KA.toByteArray().length);

byte[] K_S = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(K_S , 0);

// Decrypt certificate with K_S
SecretKeySpec myAESKeySpec =
new SecretKeySpec(K_S , 0 , 16 , "AES");

Cipher myCipher =
Cipher.getInstance("AES/CBC/PKCS7Padding" , bcProvider);

byte[] myAESIV =
myPKIMessage.getBody().getCp().getResponse(0).
getCertifiedKeyPair().getCertOrEncCert().
getEncryptedCert().getEncSymmKey().getBytes();

myCipher.init(Cipher.DECRYPT_MODE,
myAESKeySpec,
new IvParameterSpec(myAESIV));

byte[] myDecryptedCert =
myCipher.doFinal(
myPKIMessage.getBody().getCp().getResponse(0).
getCertifiedKeyPair().getCertOrEncCert().
getEncryptedCert().getEncValue().getBytes()

);

X509CertificateStructure myCert =
X509CertificateStructure.getInstance(
new ASN1InputStream(myDecryptedCert).readObject()

);

// Try to read CA root certificate from file. If that fails,
// decrypt the CA root certificate from the Certification Response
X509CertificateStructure caCert;
try{
caCert =
X509CertificateStructure.getInstance(
new ASN1InputStream(
new FileInputStream(CAcertfile)

128

).readObject()
);

}
catch(Exception e) {
if(debug) {System.out.println(
"Using encrypted CA root certificate" +
"from Certification Response.");}

myAESIV =
myPKIMessage.getBody().getCp().getResponse(1).
getCertifiedKeyPair().getCertOrEncCert().
getEncryptedCert().getEncSymmKey().getBytes();

myCipher.init(Cipher.DECRYPT_MODE,
myAESKeySpec,
new IvParameterSpec(myAESIV));

myDecryptedCert =
myCipher.doFinal(
myPKIMessage.getBody().getCp().getResponse(1).
getCertifiedKeyPair().getCertOrEncCert().
getEncryptedCert().getEncValue().getBytes()

);

caCert =
X509CertificateStructure.getInstance(
new ASN1InputStream(myDecryptedCert).readObject()

);
}

// Check CA signature on CA certificate
if (checkSignature(myRSASigner,

myDSASigner,
caCert,
caCert.getSignature().getBytes(),
caCert.getTBSCertificate().getEncoded(),
caCert.getSignatureAlgorithm()))

{
if(debug) {System.out.println(
"CA self-signature verified!");}

} else {
if(debug) {System.out.println(
"CA self-signature verification FAILED!");}

throw new Exception("CA self-signature invalid.");
}

// Check CA signature on certificate
if (checkSignature(myRSASigner,

myDSASigner,

129

caCert,
myCert.getSignature().getBytes(),
myCert.getTBSCertificate().getEncoded(),
myCert.getSignatureAlgorithm()))

{
if(debug) {System.out.println(
"CA signature verified!");}

} else {
if(debug) {System.out.println(
"CA signature verification FAILED!");}

throw new Exception("CA signature invalid.");
}

// Must check contents of certificate!
// An attacker could have modified the Certification Request
// Crude check, but the most important thing is to check
// the public key
// TODO: check exponent as well
if(rsa){
if(myCert.getSubject().toString().equals(

myX509Name.toString()
)
&&
((DERInteger)
((DERSequence)myCert.getSubjectPublicKeyInfo().
getPublicKey()

).getObjectAt(0)
).getValue().compareTo(publicKeyRSA.getModulus()) == 0)

{
if(debug) {System.out.println(
"Certificate contains correct RSA public " +
"key and name.");}

}
else {
throw new Exception("Certificate has invalid data!");

}

}
else{
if(myCert.getSubject().toString().equals(

myX509Name.toString()
)
&&
((DERInteger)
myCert.getSubjectPublicKeyInfo().getPublicKey()

).getValue().compareTo(publicKey.getY()) == 0)
{
if(debug) {System.out.println(
"Certificate contains correct DSA public " +

130

"key and name.");}
}
else {
throw new Exception("Certificate has invalid data!");

}
}
// Store private key + cert
PEMWriter pemCertFile =
new PEMWriter(new FileWriter(pemcertfile));

pemCertFile.writeObject(new X509CertificateObject(myCert));
pemCertFile.close();

DEROutputStream certFile =
new DEROutputStream(new FileOutputStream(certfile));

certFile.writeObject(myCert);
certFile.close();

KeyFactory myKeyFactory;
PrivateKey myPemPrivateKey;
DEROutputStream keyFile;
if(rsa){
myKeyFactory = KeyFactory.getInstance("RSA");
myPemPrivateKey =
myKeyFactory.generatePrivate(
new RSAPrivateCrtKeySpec(
privateKeyRSA.getModulus(),
privateKeyRSA.getPublicExponent(),
privateKeyRSA.getExponent(),
privateKeyRSA.getP(),
privateKeyRSA.getQ(),
privateKeyRSA.getDP(),
privateKeyRSA.getDQ(),
privateKeyRSA.getQInv()

)
);

} else {
myKeyFactory = KeyFactory.getInstance("DSA");
myPemPrivateKey =
myKeyFactory.generatePrivate(
new DSAPrivateKeySpec(
privateKey.getX(),
privateKey.getParameters().getP(),
privateKey.getParameters().getQ(),
privateKey.getParameters().getG()

)
);

131

keyFile =
new DEROutputStream(new FileOutputStream(keyfile));

keyFile.writeObject(new DERInteger(privateKey.getX()));
keyFile.close();

}

PEMWriter pemKeyFile =
new PEMWriter(new FileWriter(pemkeyfile));

pemKeyFile.writeObject(myPemPrivateKey);
pemKeyFile.close();

// Renew cert
if(renewCertificate) {
BigInteger[] mySignature = new BigInteger[2];
DERBitString myDERSignature;
DERInteger[] myDERIntegerArray = new DERInteger[2];
DSAPrivateKeyParameters newPrivateKey = null;
DSAPublicKeyParameters newPublicKey = null;
X509CertificateStructure myNewCert;
PSSSigner myPSSSigner;
RSAPrivateCrtKeyParameters newPrivateKeyRSA = null;
RSAKeyParameters newPublicKeyRSA = null;

for (int i = 1 ; i <= renewTimes ; i++) {

Thread.sleep(renewInterval);
if(debug) {System.out.println(
"Renewing certificate...");}

// Generate new key pair
if(rsa) {
if(debug) {System.out.print(
"Generating RSA key pair...");}

if(timing) {startTime = new Date();}
RSAKeyPair = rpg.generateKeyPair();
if(timing) {stopTime = new Date();}
if(debug) {System.out.println("OK");}
if(timing) {System.out.println(
"RSA key generation took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

newPrivateKeyRSA =
(RSAPrivateCrtKeyParameters)RSAKeyPair.getPrivate();

newPublicKeyRSA =
(RSAKeyParameters)RSAKeyPair.getPublic();

rsaPublicParameters[0] =
new DERInteger(newPublicKeyRSA.getModulus());

rsaPublicParameters[1] =

132

new DERInteger(newPublicKeyRSA.getExponent());
myDERSequence =
new DERSequence(rsaPublicParameters);

mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(keyAlgorithmIdentifier,

myDERSequence);

}
else{
if(debug) {System.out.print(
"Generating key pair...");}

if(timing) {startTime = new Date();}
keyPair = keyGen.generateKeyPair();
if(timing) {stopTime = new Date();}
// The old key pair is privateKey, publicKey
newPrivateKey =
(DSAPrivateKeyParameters)keyPair.getPrivate();

newPublicKey =
(DSAPublicKeyParameters)keyPair.getPublic();

if(debug) {System.out.println("OK");}
if(timing) {System.out.println(
"Key generation took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds.");}

dssPublicParameters[0] =
new DERInteger(
newPublicKey.getParameters().getP());

dssPublicParameters[1] =
new DERInteger(
newPublicKey.getParameters().getQ());

dssPublicParameters[2] =
new DERInteger(
newPublicKey.getParameters().getG());

mySubjectPublicKeyInfo =
new SubjectPublicKeyInfo(
keyAlgorithmIdentifier,
new DERInteger(newPublicKey.getY())

);
}

// Construct new CertTemplate
myCertTemplate = new CertTemplate();
// version=2 -> X.509v3
myCertTemplate.setVersion(new DERInteger(2));
myCertTemplate.setSubject(
new X509Name(domain+",uid="+username));

myCertTemplate.setPublicKey(mySubjectPublicKeyInfo);

133

myCertRequest =
new CertRequest(
new DERInteger(new BigInteger(128 , secureRandom)),
myCertTemplate

);

myCertReqMsg = new CertReqMsg(myCertRequest);

// Add CertReqMessage to CertReqMessages

myCertReqMessages = new CertReqMessages(myCertReqMsg);

myNonce = new BigInteger(128 , secureRandom);

myPKIHeader =
new PKIHeader(new DERInteger(1),

new GeneralName(
new X509Name(domain+",cn="+username)

),
new GeneralName(
new X509Name("dc=no,dc=ntnu,cn=ca")

));
myPKIHeader.setMessageTime(
new DERGeneralizedTime(new Date()));

myPKIHeader.setSenderNonce(
new DEROctetString(myNonce.toByteArray()));

myPKIHeader.setProtectionAlg(sigAlgorithmIdentifier);

// Construct PKIMessage
// 2 = Certification Request
myPKIBody = new PKIBody(myCertReqMessages, 2);
myPKIMessage = new PKIMessage(myPKIHeader, myPKIBody);

// Add old certificate as extraCert
myPKIMessage.addExtraCert(myCert);

// Add protection to PKIMessage

digestIn = myPKIMessage.getProtectedBytes();
if(rsa) {
myPSSSigner =
new PSSSigner(new RSAEngine(),

new SHA1Digest(),
20);

myPSSSigner.init(true, privateKeyRSA);
myPSSSigner.update(digestIn , 0 , digestIn.length);
myDERSignature =

134

new DERBitString(myPSSSigner.generateSignature());
}
else{
mySHA1Digest = new SHA1Digest();
mySHA1Digest.update(digestIn , 0 , digestIn.length);
digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);

myDSASigner.init(true , privateKey);
mySignature =
myDSASigner.generateSignature(digestOut);

myDERIntegerArray[0] = new DERInteger(mySignature[0]);
myDERIntegerArray[1] = new DERInteger(mySignature[1]);

myDERSignature =
new DERBitString(
new DERSequence(myDERIntegerArray));

}
myPKIMessage.setProtection(myDERSignature);

// Write the message to file, to enable stress test
mFile =
new DEROutputStream(
new FileOutputStream(messageFile));

mFile.writeObject(myPKIMessage);
mFile.close();

serverConnection = serverURL.openConnection();
serverConnection.setRequestProperty(
"Content-Type", "application/pkixcmp");

serverConnection.setUseCaches(false);
serverConnection.setDoOutput(true);
serverConnection.setDoInput(true);
serverConnection.connect();

// Send PKIMessage to server,
// receive CertRep or Error
dRequestData =
new DEROutputStream(
serverConnection.getOutputStream());

dRequestData.writeObject(myPKIMessage);
dRequestData.close();

myPKIMessage =
PKIMessage.getInstance(
new ASN1InputStream(
serverConnection.getInputStream()

).readObject()
);

135

myNewCert =
myPKIMessage.getBody().getCp().getResponse(0).
getCertifiedKeyPair().getCertOrEncCert().
getCertificate();

// Check CA signature on certificate
if (checkSignature(myRSASigner,

myDSASigner,
caCert,
myNewCert.getSignature().getBytes(),
myNewCert.getTBSCertificate().getEncoded(),
myNewCert.getSignatureAlgorithm()))

{
if(debug) {System.out.println(
"CA signature verified!");}

} else {
if(debug) {System.out.println(
"CA signature verification FAILED!");}

throw new Exception("CA signature invalid.");
}

// We should check the certificate contents
// here as well, but it is not quite as critical
// due to the message protection of the Certification
// Request
if(rsa){
if(myNewCert.getSubject().toString().equals(

myX509Name.toString()
)
&&
((DERInteger)
((DERSequence)myNewCert.
getSubjectPublicKeyInfo().getPublicKey()).
getObjectAt(0)

).getValue().compareTo(
newPublicKeyRSA.getModulus()) == 0)

{
if(debug) {System.out.println(
"Certificate contains correct RSA public " +
"key and name.");}

}
else {
throw new Exception(
"Certificate has invalid data!");

}

}
else{

136

if(myNewCert.getSubject().toString().equals(
myX509Name.toString()

)
&&
((DERInteger)
myNewCert.getSubjectPublicKeyInfo().
getPublicKey()

).getValue().compareTo(
newPublicKey.getY()) == 0)

{
if(debug) {System.out.println(
"Certificate contains correct DSA public " +
"key and name.");}

}
else {
throw new Exception(
"Certificate has invalid data!");

}
}

// If we got this far, then the update went well.
// Start using the new certificate.
if(rsa){
privateKeyRSA = newPrivateKeyRSA;
publicKeyRSA = newPublicKeyRSA;

}
else {
privateKey = newPrivateKey;
publicKey = newPublicKey;

}
myCert = myNewCert;

// Store private key + cert
pemCertFile =
new PEMWriter(new FileWriter(pemcertfile));

pemCertFile.writeObject(
new X509CertificateObject(myCert));

pemCertFile.close();

certFile =
new DEROutputStream(new FileOutputStream(certfile));

certFile.writeObject(myCert);
certFile.close();

if(rsa){
myPemPrivateKey =
myKeyFactory.generatePrivate(
new RSAPrivateCrtKeySpec(
privateKeyRSA.getModulus(),

137

privateKeyRSA.getPublicExponent(),
privateKeyRSA.getExponent(),
privateKeyRSA.getP(),
privateKeyRSA.getQ(),
privateKeyRSA.getDP(),
privateKeyRSA.getDQ(),
privateKeyRSA.getQInv()

)
);

} else {
myPemPrivateKey =
myKeyFactory.generatePrivate(
new DSAPrivateKeySpec(
privateKey.getX(),
privateKey.getParameters().getP(),
privateKey.getParameters().getQ(),
privateKey.getParameters().getG()

)
);

keyFile =
new DEROutputStream(new FileOutputStream(keyfile));

keyFile.writeObject(
new DERInteger(privateKey.getX()));

keyFile.close();
}
pemKeyFile =
new PEMWriter(new FileWriter(pemkeyfile));

pemKeyFile.writeObject(myPemPrivateKey);
pemKeyFile.close();

}
} // end if(renewCertificate)

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

private static boolean checkSignature(
PSSSigner myRSASigner,
DSASigner myDSASigner,
X509CertificateStructure inCert,
byte[] sig,
byte[] message,

138

AlgorithmIdentifier sigAlgId)
throws CryptoException , IOException

{

SubjectPublicKeyInfo clientSubjectPublicKeyInfo =
inCert.getSubjectPublicKeyInfo();

AlgorithmIdentifier pubKeyAlgId =
clientSubjectPublicKeyInfo.getAlgorithmId();

// OID 1.2.840.113549.1.1.5 = sha-1WithRSAEncryption
if(sigAlgId.getObjectId().getId().equals(
"1.2.840.113549.1.1.5"))

{
if(debug) {System.out.println(
"Checking RSA signature...");}

DERSequence RSADERSequence =
(DERSequence)clientSubjectPublicKeyInfo.getPublicKey();

myRSASigner.init(false,
new RSAKeyParameters(
false,
((DERInteger)RSADERSequence.getObjectAt(0)).getValue(),
((DERInteger)RSADERSequence.getObjectAt(1)).getValue()

)
);
myRSASigner.update(message , 0 , message.length);
return myRSASigner.verifySignature(sig);

}
else{
if(debug) {System.out.println(
"Checking DSA signature...");}

DERSequence sigDERSequence, verDERSequence;
DERInteger sigR, sigS, DERP, DERQ, DERR;
ASN1InputStream ais = new ASN1InputStream(sig);
sigDERSequence = (DERSequence)ais.readObject();
sigR = (DERInteger)sigDERSequence.getObjectAt(0);
sigS = (DERInteger)sigDERSequence.getObjectAt(1);
// this sequence consists of 3 Integers: p, q and g.
verDERSequence = (DERSequence)sigAlgId.getParameters();
DERP = (DERInteger)verDERSequence.getObjectAt(0);
DERQ = (DERInteger)verDERSequence.getObjectAt(1);
DERR = (DERInteger)verDERSequence.getObjectAt(2);

DSAPublicKeyParameters publicKey =
new DSAPublicKeyParameters(
((DERInteger)clientSubjectPublicKeyInfo.
getPublicKey()).getValue(),

new DSAParameters(DERP.getValue(),
DERQ.getValue(),

139

DERR.getValue())
);

SHA1Digest mySHA1Digest = new SHA1Digest();
mySHA1Digest.update(message , 0 , message.length);
byte[] digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);
myDSASigner.init(false , publicKey);
return myDSASigner.verifySignature(digestOut,

sigR.getValue(),
sigS.getValue());

}
}// end method checkSignature

} // end class client

140

Appendix J

AS/CA configuration file

Bit length of SPEKE modulus
#modulusLength=768
modulusLength=1024
#modulusLength=2048

Length of random parameters R_C and R_CA
#randLength=256
randLength=336
#randLength=336

Bit length of modulus for CA signatures
#strength=768
strength=1024
#strength=2048

Client certificate lifetime in milliseconds
validityPeriod=3600000

Validity of CA certificate, 1 year
CAvalidityPeriod=31536000000

Should we use RSA instead of DSA for CA signatures?
rsa=false

domain=dc=no,dc=ntnu,ou=people
debug=true
timing=true

768 bit SPEKE modulus
768modulus=1021918270047179252807490314220973098602574120515609864
230568601235909823034250832154501794742383748650134748590301771629
652464052147888094945571384875285136318989341416528024038517070727
492030482730933220293025850516570782636121987

141

1024 bit SPEKE modulus
1024modulus=139223120613132833966730073160692428142702430180936051
480977697510414794046865644843197580248702999371718582429099919175
099548544547399641655434049350599018952830814320445259079489526728
555197220251532649225547301006645279305011686402537225200881215146
772036803672369934855550382410862270169595105081399889403

2048 bit SPEKE modulus
2048modulus=283945479948237155647991569117202457222920265079132083
728926760499098529219981247672626312910535157899472699337324835327
262742577111413418428062590144488793454754222031394390878928316187
730177556344600056119245090741319734087440439422266778074411549698
891036722466262048294270259734016594455919646908239667679758638472
769761124911495062483656256482325620463800183739615646865943609400
410423394064921157047924899616378771656408403850942044361012198741
695055017089756995337800182105874874642885756944569723590974491758
952236377080209922111882907646342183348651486796045896416705675891
97870421121892830028187958062847439

142

Appendix K

Client configuration file

URL to server
serverUrl=http://127.0.0.1:8080/sso

Bit length of SPEKE modulus p
#modulusLength=768
modulusLength=1024
#modulusLength=2048

Bit length of random parameters R_C and R_CA
#randLength=256
randLength=336

Bit length of modulus for client signatures
#strength=768
strength=1024
#strength=2048

Should we generate DSA parameters?
generateDSAParameters=false

Should we use RSA instead of DSA?
rsa=true

Should we renew the certificate?
renewCertificate=true

How often should we renew the certificate (milliseconds)?
renewInterval=1800000

How many times should we renew the certificate?
renewTimes=10

Hardcoded DSA parameters

143

768 bit modulus DSA parameters
768p=1236752285937212935742379477324717227402890972407035692743396
902507665684182633203095564592963306360162103876067404150970667978
374942477634244489642256395162717424887846501466492557841859453669
008074602985208771053712199266252976891

768q=1456260988372919293152728381233525829989072028861

768g=2582503278984886416133564756953258154116006552524920358332567
479364090180533385465720368727178135229793783405373494961409652164
502905405586467931098862090150161307276574952697466182848019295976
13696835114322467425544950483511605630

1024 bit modulus DSA parameters
1024p=100605512138451092793937890202301370956887271863319499037004
804742992234725416797556454844267254878766116695700643012828523475
874230713873425486842563918613396951140442092893940789848428573528
095351693736627556555672781076125950314898037738991524256787534824
006011704324800444022796967342319556595695572322657

1024q=974919424217843684803141841243633253920568455477

1024g=209174719312300984079660269399880155742384657795411567305321
826810928169251548722459259276171211112243607102663985586792510118
829018669911990986043024306266279144818307889539059428222718656947
570030344862178740599775246659932609954018069959678489239778714617
79403090638285368319951785399957211292913774715183

2048 bit modulus DSA parameters
2048p=285240074584526653713893987977601501647297087620068032929403
687379870525204290355776523816976070999155008978425007891860274113
317090495765566378837783604667069380381484998149435876653241000573
363494191187489789710177348938765822806828106868782455975896888565
311232948246439501088789018304935092979710509748610554278715333764
652162673194364029958946239990924968935325054520346419291247454515
966999431458030074348102727649675101785155595767594056131570317707
536166002299911237974408820907078029711079650329530947752874087710
183368781087955974826066627691241943356909161783072280840946657913
25947951277615132206683057869

2048q=864616035198890466891554873473834366078831290793

2048g=953472940613863680743088133214405131161116890074892311928699
922313332648783818534248869350327508074386493265626186177924006221
274743832946534916755739661845756576229012444298731272197699094275
555660966483402263537097528125895263192915051015427314237652507018
608590624928892015205147233035409843223380117710877446734509833959
632519576648919561452953136208246330391440696715933240111357421378
719290090948374402402723753172424046320991015944415416940125476942

144

107237921138499273917672818589970549314673688435334446028881145909
968192838675116526518163689695445110864034901034810275070070415373
0213759441746626758212623828

Files used to save keys and certificates
certfile=client.crt
keyfile=client.key
pemcertfile=client_crt.pem
pemkeyfile=client_key.pem

Uncomment one of these to use a CA certificate distributed
out-of-band
#CAcertfile=ca_768.crt
#CAcertfile=ca_1024.crt
#CAcertfile=ca_2048.crt

Filename for PKIMessage used for stress tests
messageFile=certreq.der

domain=dc=no,dc=ntnu,ou=people
debug=true
timing=true

768 bit SPEKE modulus
768modulus=1021918270047179252807490314220973098602574120515609864
230568601235909823034250832154501794742383748650134748590301771629
652464052147888094945571384875285136318989341416528024038517070727
492030482730933220293025850516570782636121987

1024 bit SPEKE modulus
1024modulus=139223120613132833966730073160692428142702430180936051
480977697510414794046865644843197580248702999371718582429099919175
099548544547399641655434049350599018952830814320445259079489526728
555197220251532649225547301006645279305011686402537225200881215146
772036803672369934855550382410862270169595105081399889403

2048 bit SPEKE modulus
2048modulus=283945479948237155647991569117202457222920265079132083
728926760499098529219981247672626312910535157899472699337324835327
262742577111413418428062590144488793454754222031394390878928316187
730177556344600056119245090741319734087440439422266778074411549698
891036722466262048294270259734016594455919646908239667679758638472
769761124911495062483656256482325620463800183739615646865943609400
410423394064921157047924899616378771656408403850942044361012198741
695055017089756995337800182105874874642885756944569723590974491758
952236377080209922111882907646342183348651486796045896416705675891
97870421121892830028187958062847439

145

Appendix L

Stress test shell script

#!/bin/bash
JAVA_HOME=/usr/local/jdk1.5.0_02
PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=novosec-bc-ext/novosec_cmp:\

crypto-127/jars/bcprov-jdk15-127.jar:\
crypto-127/jars/bctest-jdk15-127.jar:\
crypto-127/jars/bctsp-jdk15-127.jar:\
classes

STARTTIME=‘date +"%s%N"‘
LOGFILE=performance/new/stresstest_$STARTTIME.log
touch $LOGFILE
echo "First, generate new PKIMessage..."
java -classpath $CLASSPATH no.ntnu.item.ttm4900.client eian test123
echo "Starting stress test..."
while true
do
if test ‘ps -ef|grep no.ntnu.item.ttm4900.stresstest|grep java|wc -l‘ \
-lt $1
then java -classpath $CLASSPATH no.ntnu.item.ttm4900.stresstest \

eian test123 10000 >> $LOGFILE & else java -classpath $CLASSPATH \
no.ntnu.item.ttm4900.stresstest eian test123 1 >> $LOGFILE ; fi
date >> $LOGFILE
sleep 60
done

146

Appendix M

Java stress test classes

stresstest.java is used for performance testing of the initial issuance of certificated using
SPEKE authentication:

// SPEKE/CMP on-the-fly SSO implementation
//
// Author: Martin Eian
// This class is used to stress test initial issuance by the server.
// The client class must be run once first, to write a PKIMessage
// to file that can be loaded by the stresstest.

package no.ntnu.item.ttm4900;

import java.io.FileInputStream;
import java.io.OutputStream;

import java.math.BigInteger;

import java.net.URLConnection;
import java.net.URL;

import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;

import java.util.Date;
import java.util.Properties;

import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DEROctetString;
import org.bouncycastle.asn1.DEROutputStream;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

import com.novosec.pkix.asn1.cmp.*;

147

import com.novosec.pkix.asn1.crmf.*;

class stresstest
{
static final boolean debug = false;
static final boolean timing = true;
static final String propertiesFile = "client.properties";
// SHA-1 of the password ’test123’
static BigInteger P = new
BigInteger("653878565946713713149629104275478104571867727804");
static BigInteger TWO = BigInteger.valueOf(2);

public static void main(String[] args)
{
try {
Properties myProperties = new Properties();
myProperties.load(new FileInputStream(propertiesFile));
String serverUrl = myProperties.getProperty("serverUrl");
// the p in Z_p used for SPEKE, all calculations are
// performed mod p
int modulusLength =
Integer.parseInt(myProperties.getProperty("modulusLength"));

// bit length of random parameters (A , B) in SPEKE
int randlength =
Integer.parseInt(myProperties.getProperty("randLength"));

String modulus;
if (modulusLength == 2048) {
modulus = myProperties.getProperty("2048modulus");

}
else if (modulusLength == 1024) {
modulus = myProperties.getProperty("1024modulus");

}
else {
modulus = myProperties.getProperty("768modulus");

}
BigInteger p = new BigInteger(modulus);

Provider bcProvider = new BouncyCastleProvider();
Security.addProvider(bcProvider);
SecureRandom secureRandom = new SecureRandom();

String username = (args.length > 0 ? args[0] : "test");
String pwd = (args.length > 1 ? args[1] : "test");
// How many requests to make during stress test
String requests = (args.length > 1 ? args[2] : "1");
int numberRequests = Integer.parseInt(requests);

Date startTime, stopTime;
PKIMessage myPKIMessage =

148

PKIMessage.getInstance(
new ASN1InputStream(
new FileInputStream("certreq.der")).readObject());

PKIHeader myPKIHeader = myPKIMessage.getHeader();
PKIBody myPKIBody = myPKIMessage.getBody();

BigInteger RA, ha;

URL serverURL = new URL(serverUrl);
URLConnection serverConnection = serverURL.openConnection();
if(timing) {startTime = new Date();}

int errors = 0;
for (int i = 1 ; i <= numberRequests ; i++) {
try{

// Generate new SPEKE public key for each request to
// avoid caching on the server
RA = new BigInteger(randlength , secureRandom);
ha = P.modPow(RA.multiply(TWO) , p);
myPKIHeader.setSenderKID(new DEROctetString(ha.toByteArray()));
myPKIMessage = new PKIMessage(myPKIHeader, myPKIBody);

serverConnection = serverURL.openConnection();
serverConnection.setRequestProperty("Content-Type",
"application/pkixcmp");

serverConnection.setUseCaches(false);
serverConnection.setDoOutput(true);
serverConnection.setDoInput(true);
serverConnection.connect();

// Send PKIMessage to server, receive CertRep or Error
DEROutputStream dRequestData = new DEROutputStream(
serverConnection.getOutputStream());
dRequestData.writeObject(myPKIMessage);
//dRequestData.flush();
dRequestData.close();
PKIMessage repPKIMessage = PKIMessage.getInstance(
new ASN1InputStream(
serverConnection.getInputStream()).readObject());

}
catch (Exception e) {
errors++;
e.printStackTrace();

}
}
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(requests + " requests took " +

149

(stopTime.getTime() - startTime.getTime()) +
" milliseconds, number of errors: " + errors);}

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

} // end class stresstest

stresstest renew.java is used for performance testing of renewal of certificates using digital
signatures for authentication:

// SPEKE/CMP on-the-fly SSO implementation
//
// Author: Martin Eian
// This class is used to stress test certificate renewal by the server.
// The client class must be run once first, with at least on renewal,
// to write a PKIMessage to file that can be loaded by the stress test.
package no.ntnu.item.ttm4900;

import java.io.FileInputStream;
import java.io.FileReader;
import java.io.OutputStream;

import java.math.BigInteger;

import java.net.URLConnection;
import java.net.URL;

import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;

import java.util.Date;
import java.util.Properties;

import org.bouncycastle.asn1.ASN1InputStream;
import org.bouncycastle.asn1.DERBitString;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DEROctetString;
import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.x509.X509CertificateStructure;
import org.bouncycastle.crypto.digests.SHA1Digest;

150

import org.bouncycastle.crypto.engines.RSAEngine;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.crypto.signers.DSASigner;
import org.bouncycastle.crypto.signers.PSSSigner;
import org.bouncycastle.openssl.PEMReader;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.provider.JCERSAPrivateKey;
import org.bouncycastle.jce.provider.JCERSAPrivateCrtKey;
import org.bouncycastle.jce.provider.RSAUtil;

import com.novosec.pkix.asn1.cmp.*;
import com.novosec.pkix.asn1.crmf.*;

class stresstest_renew
{
static final boolean debug = false;
static final boolean timing = true;
static boolean rsa = false;
static final String propertiesFile = "client.properties";
// SHA-1 of the password ’test123’
static BigInteger P = new
BigInteger("653878565946713713149629104275478104571867727804");
static BigInteger TWO = BigInteger.valueOf(2);

public static void main(String[] args)
{
try {
Properties myProperties = new Properties();
myProperties.load(new FileInputStream(propertiesFile));
String serverUrl = myProperties.getProperty("serverUrl");

Provider bcProvider = new BouncyCastleProvider();
Security.addProvider(bcProvider);
SecureRandom secureRandom = new SecureRandom();

String username = (args.length > 0 ? args[0] : "test");
String pwd = (args.length > 1 ? args[1] : "test");
// How many requests to make during stress test
String requests = (args.length > 1 ? args[2] : "1");
int numberRequests = Integer.parseInt(requests);
DERInteger myDERP, myDERQ, myDERG, myDERX;
DSAPrivateKeyParameters privateKey;
DERSequence myDERSequence;
SHA1Digest mySHA1Digest = new SHA1Digest();
DSASigner myDSASigner = new DSASigner();
PSSSigner myRSASigner =

151

new PSSSigner(new RSAEngine() , mySHA1Digest , 20);
byte[] digestIn, digestOut;
RSAPrivateCrtKeyParameters privateKeyRSA = null;
JCERSAPrivateCrtKey privateKeyTmpRSA = null;
KeyPair keyPairRSA;

Date startTime, stopTime;
PKIMessage myPKIMessage =
PKIMessage.getInstance(
new ASN1InputStream(
new FileInputStream("certreq.der")).readObject());

PKIHeader myPKIHeader = myPKIMessage.getHeader();
PKIBody myPKIBody = myPKIMessage.getBody();

X509CertificateStructure myCert =
X509CertificateStructure.getInstance(
new ASN1InputStream(
new FileInputStream("client.crt")).readObject());

PEMReader myPEMReader =
new PEMReader(new FileReader("client_key.pem"));

if(myCert.getSubjectPublicKeyInfo().getAlgorithmId().
getObjectId().getId().
equals("1.2.840.113549.1.1.1"))

{
// We are using RSA, load RSA private key
rsa = true;
keyPairRSA = (KeyPair)myPEMReader.readObject();
privateKeyRSA =
(RSAPrivateCrtKeyParameters)
RSAUtil.generatePrivateKeyParameter(
(JCERSAPrivateKey)keyPairRSA.getPrivate());

myRSASigner.init(true, privateKeyRSA);
}
else {
// We are using DSA, load DSA private key
myDERX = DERInteger.getInstance(new ASN1InputStream(
new FileInputStream("client.key")).readObject());
myDERSequence =
(DERSequence)
myCert.getSubjectPublicKeyInfo().

getAlgorithmId().getParameters();
myDERP = (DERInteger)myDERSequence.getObjectAt(0);
myDERQ = (DERInteger)myDERSequence.getObjectAt(1);
myDERG = (DERInteger)myDERSequence.getObjectAt(2);

privateKey =

152

new DSAPrivateKeyParameters(
myDERX.getValue(),
new DSAParameters(myDERP.getValue(),

myDERQ.getValue(),
myDERG.getValue()));

myDSASigner.init(true , privateKey);
}

BigInteger myNonce;

DERInteger[] myDERIntegerArray = new DERInteger[2];
DERBitString myDERSignature;
BigInteger[] mySignature = new BigInteger[2];
URL serverURL = new URL(serverUrl);
URLConnection serverConnection = serverURL.openConnection();
if(timing) {startTime = new Date();}

int errors = 0;
for (int i = 1 ; i <= numberRequests ; i++) {
try{

// Make each PKIMessage different, so that
// the server cannot cache the signature
// validation data.
myNonce = new BigInteger(128 , secureRandom);
myPKIHeader.setSenderNonce(new DEROctetString(
myNonce.toByteArray()));

myPKIMessage = new PKIMessage(myPKIHeader, myPKIBody);

// Add old certificate as extraCert
myPKIMessage.addExtraCert(myCert);

// The message has changed, so we need to sign
// it again
// Add protection to PKIMessage
digestIn = myPKIMessage.getProtectedBytes();

if(rsa){
myRSASigner.update(digestIn , 0 , digestIn.length);
myDERSignature =
new DERBitString(myRSASigner.generateSignature());

}
else{

mySHA1Digest.update(digestIn , 0 , digestIn.length);
digestOut = new byte[mySHA1Digest.getDigestSize()];
mySHA1Digest.doFinal(digestOut , 0);

// Then sign it
mySignature = myDSASigner.generateSignature(digestOut);

153

myDERIntegerArray[0] = new DERInteger(mySignature[0]);
myDERIntegerArray[1] = new DERInteger(mySignature[1]);

myDERSignature =
new DERBitString(new DERSequence(myDERIntegerArray));

}

myPKIMessage.setProtection(myDERSignature);

serverConnection = serverURL.openConnection();
serverConnection.setRequestProperty("Content-Type",
"application/pkixcmp");
serverConnection.setUseCaches(false);
serverConnection.setDoOutput(true);
serverConnection.setDoInput(true);
serverConnection.connect();

// Send PKIMessage to server, receive CertRep or Error
DEROutputStream dRequestData = new DEROutputStream(
serverConnection.getOutputStream());
dRequestData.writeObject(myPKIMessage);
//dRequestData.flush();
dRequestData.close();
PKIMessage repPKIMessage = PKIMessage.getInstance(
new ASN1InputStream(
serverConnection.getInputStream()).readObject());

}
catch (Exception e) {
errors++;
e.printStackTrace();

}
}
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(requests + " requests took " +
(stopTime.getTime() - startTime.getTime()) +
" milliseconds, number of errors: " + errors);}

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

} // end class stresstest_renew

154

Appendix N

Key generation class

// SPEKE/CMP on-the-fly SSO implementation
//
// This class is used to test key generation
// performance
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import java.io.FileInputStream;

import java.math.BigInteger;

import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;

import java.util.Date;
import java.util.Properties;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.generators.DSAKeyPairGenerator;
import org.bouncycastle.crypto.generators.DSAParametersGenerator;
import org.bouncycastle.crypto.generators.RSAKeyPairGenerator;
import org.bouncycastle.crypto.params.DSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

class keygen
{
static final boolean debug = true;
static final boolean timing = true;
static final String propertiesFile = "client.properties";

155

static BigInteger DSAP, DSAQ, DSAG;
static int certainty = 100;

public static void main(String[] args)
{
try {
String timesString = (args.length > 0 ? args[0] : "1");
int times = Integer.parseInt(timesString);
String strengthString = (args.length > 1 ? args[1] : "768");
int strength = Integer.parseInt(strengthString);
Date startTime, stopTime;
Properties myProperties = new Properties();
myProperties.load(new FileInputStream(propertiesFile));
// Pre-generated DSA parameters
if (strength == 2048) {
DSAP = new BigInteger(myProperties.getProperty("2048p"));
DSAQ = new BigInteger(myProperties.getProperty("2048q"));
DSAG = new BigInteger(myProperties.getProperty("2048g"));

}
else if (strength == 1024) {
DSAP = new BigInteger(myProperties.getProperty("1024p"));
DSAQ = new BigInteger(myProperties.getProperty("1024q"));
DSAG = new BigInteger(myProperties.getProperty("1024g"));

}
else {
DSAP = new BigInteger(myProperties.getProperty("768p"));
DSAQ = new BigInteger(myProperties.getProperty("768q"));
DSAG = new BigInteger(myProperties.getProperty("768g"));

}

Provider bcProvider = new BouncyCastleProvider();
Security.addProvider(bcProvider);
SecureRandom secureRandom = new SecureRandom();
AsymmetricCipherKeyPair keyPair, myRSAKeyPair;
RSAKeyGenerationParameters rkgp =
new RSAKeyGenerationParameters(
new BigInteger("65537"),
secureRandom,
strength,
certainty) ;

RSAKeyPairGenerator rpg = new RSAKeyPairGenerator();
rpg.init(rkgp);

DSAKeyGenerationParameters kgp = new DSAKeyGenerationParameters(
secureRandom , new DSAParameters(DSAP, DSAQ, DSAG));

DSAKeyPairGenerator keyGen = new DSAKeyPairGenerator();
keyGen.init(kgp);
keyPair = keyGen.generateKeyPair();

156

for (int i = 1 ; i <= times ; i++) {
if(timing) {startTime = new Date();}
myRSAKeyPair = rpg.generateKeyPair();
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"RSA|" + strength +
"|" +
(stopTime.getTime() - startTime.getTime()) +
"|milliseconds.");}

if(timing) {startTime = new Date();}
keyPair = keyGen.generateKeyPair();
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"DSA|" + strength +
"|" +
(stopTime.getTime() - startTime.getTime()) +
"|milliseconds.");}

}

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

} // end class keygen

157

Appendix O

DSA parameter generation
class

// SPEKE/CMP on-the-fly SSO implementation
//
// This class is used to test DSA parameter
// generation performance
// Author: Martin Eian

package no.ntnu.item.ttm4900;

import java.math.BigInteger;

import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;

import java.util.Date;

import org.bouncycastle.crypto.generators.DSAParametersGenerator;
import org.bouncycastle.crypto.params.DSAParameters;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

class paramgen
{
static final boolean debug = true;
static final boolean timing = true;
static int certainty = 100;

public static void main(String[] args)
{
try {
String timesString = (args.length > 0 ? args[0] : "1");

158

int times = Integer.parseInt(timesString);
String strengthString = (args.length > 1 ? args[1] : "768");
int strength = Integer.parseInt(strengthString);
Date startTime, stopTime;

Provider bcProvider = new BouncyCastleProvider();
Security.addProvider(bcProvider);
SecureRandom secureRandom = new SecureRandom();

DSAParametersGenerator dpg = new DSAParametersGenerator();
dpg.init(strength , certainty , secureRandom);
DSAParameters dp;

for (int i = 1 ; i <= times ; i++) {
if(timing) {startTime = new Date();}
dp = dpg.generateParameters();
if(timing) {stopTime = new Date();}
if(timing) {System.out.println(
"DSAparam|" + strength +
"|" +
(stopTime.getTime() - startTime.getTime()) +
"|milliseconds.");}

}

} // end try

catch (Exception e) {
e.printStackTrace();

} // end catch

} // end main

} // end class paramgen

159

Appendix P

Hardware info

OS (uname -a) and CPU information (/proc/cpuinfo) for Dell PE 2650 w/dual Intel Xeon
2.8 GHz. The server had 2 GB of physical RAM.

Linux puma 2.6.5-7.151-smp #1 SMP Fri Mar 18 11:31:21 UTC 2005 i686
i686 i386 GNU/Linux

processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.80GHz
stepping : 9
cpu MHz : 2791.424
cache size : 512 KB
physical id : 0
siblings : 2
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid
bogomips : 5505.02

processor : 1
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.80GHz

160

stepping : 9
cpu MHz : 2791.424
cache size : 512 KB
physical id : 0
siblings : 2
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid
bogomips : 5570.56

processor : 2
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.80GHz
stepping : 9
cpu MHz : 2791.424
cache size : 512 KB
physical id : 3
siblings : 2
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid
bogomips : 5570.56

processor : 3
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.80GHz
stepping : 9
cpu MHz : 2791.424
cache size : 512 KB
physical id : 3
siblings : 2

161

fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid
bogomips : 5570.56

162

	Introduction
	Motivation
	Background
	Problem description
	Methods
	Report structure

	Password security
	Server attacks
	Client attacks
	Network attacks
	Password security summary

	Single sign-on
	Kerberos
	Extensions to Kerberos
	SPX
	SESAME
	Novell NetWare 4
	PKI
	Single sign-on summary

	Building blocks
	PKAS
	SPEKE
	SACRED
	CMP

	Construction
	Requirements
	Design
	Security analysis
	Performance analysis
	Implementation
	Performance testing

	Conclusions
	Key learning points
	Further work
	Summary

	Tomcat configuration
	Debug output from server and client
	OpenSSL asn1parse of a PKIMessage
	OpenVPN test
	DSA certificate generation class
	RSA certificate generation class
	SPEKE modulus generation class
	AS/CA implementation
	Client implementation
	AS/CA configuration file
	Client configuration file
	Stress test shell script
	Java stress test classes
	Key generation class
	DSA parameter generation class
	Hardware info

